IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.25456.html
   My bibliography  Save this paper

A Practitioner's Guide to AI+ML in Portfolio Investing

Author

Listed:
  • Mehmet Caner Qingliang Fan

Abstract

In this review, we provide practical guidance on some of the main machine learning tools used in portfolio weight formation. This is not an exhaustive list, but a fraction of the ones used and have some statistical analysis behind it. All this research is essentially tied to precision matrix of excess asset returns. Our main point is that the techniques should be used in conjunction with outlined objective functions. In other words, there should be joint analysis of Machine Learning (ML) technique with the possible portfolio choice-objective functions in terms of test period Sharpe Ratio or returns. The ML method with the best objective function should provide the weight for portfolio formation. Empirically we analyze five time periods of interest, that are out-sample and show performance of some ML-Artificial Intelligence (AI) methods. We see that nodewise regression with Global Minimum Variance portfolio based weights deliver very good Sharpe Ratio and returns across five time periods in this century we analyze. We cover three downturns, and 2 long term investment spans.

Suggested Citation

  • Mehmet Caner Qingliang Fan, 2025. "A Practitioner's Guide to AI+ML in Portfolio Investing," Papers 2509.25456, arXiv.org.
  • Handle: RePEc:arx:papers:2509.25456
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.25456
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    3. Pedro Barroso & Konark Saxena, 2022. "Lest We Forget: Learn from Out-of-Sample Forecast Errors When Optimizing Portfolios," The Review of Financial Studies, Society for Financial Studies, vol. 35(3), pages 1222-1278.
    4. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    5. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    6. Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
    7. Chang, Jinyuan & Qiu, Yumou & Yao, Qiwei & Zou, Tao, 2018. "Confidence regions for entries of a large precision matrix," Journal of Econometrics, Elsevier, vol. 206(1), pages 57-82.
    8. Caner, Mehmet & Daniele, Maurizio, 2025. "Deep learning based residuals in non-linear factor models: Precision matrix estimation of returns with low signal-to-noise ratio," Journal of Econometrics, Elsevier, vol. 251(C).
    9. Laurent Callot & Mehmet Caner & A. Özlem Önder & Esra Ulaşan, 2021. "A Nodewise Regression Approach to Estimating Large Portfolios," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 520-531, March.
    10. Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
    11. Chang, Jinyuan & Qiu, Yumou & Yao, Qiwei & Zou, Tao, 2018. "Confidence regions for entries of a large precision matrix," LSE Research Online Documents on Economics 87513, London School of Economics and Political Science, LSE Library.
    12. Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023. "Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Caner & Qingliang Fan, 2024. "Portfolio Analysis in High Dimensions with TE and Weight Constraints," Papers 2402.17523, arXiv.org, revised Oct 2025.
    2. Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023. "Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
    3. Weilong Liu & Yanchu Liu, 2025. "Covariance Matrix Estimation for Positively Correlated Assets," Papers 2507.01545, arXiv.org.
    4. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    5. Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
    6. Ekaterina Seregina, 2020. "A Basket Half Full: Sparse Portfolios," Papers 2011.04278, arXiv.org, revised Apr 2021.
    7. Wolfgang Karl Hardle & Yegor Klochkov & Alla Petukhina & Nikita Zhivotovskiy, 2022. "Robustifying Markowitz," Papers 2212.13996, arXiv.org.
    8. Esra Ulasan & A. Özlem Önder, 2023. "Large portfolio optimisation approaches," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 485-497, October.
    9. Petukhina, Alla & Klochkov, Yegor & Härdle, Wolfgang Karl & Zhivotovskiy, Nikita, 2024. "Robustifying Markowitz," Journal of Econometrics, Elsevier, vol. 239(2).
    10. Tae-Hwy Lee & Ekaterina Seregina, 2024. "Optimal Portfolio Using Factor Graphical Lasso," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
    11. Lisa R. Goldberg & Hubeyb Gurdogan & Alec Kercheval, 2025. "Portfolio optimisation via strategy-specific eigenvector shrinkage," Finance and Stochastics, Springer, vol. 29(3), pages 665-706, July.
    12. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    13. Santos, André A.P. & Torrent, Hudson S., 2022. "Markowitz meets technical analysis: Building optimal portfolios by exploiting information in trend-following signals," Finance Research Letters, Elsevier, vol. 49(C).
    14. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
    15. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    16. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    17. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    18. Alex Shkolnik & Alec Kercheval & Hubeyb Gurdogan & Lisa R. Goldberg & Haim Bar, 2025. "Portfolio selection revisited," Annals of Operations Research, Springer, vol. 346(1), pages 137-155, March.
    19. Long Zhao & Deepayan Chakrabarti & Kumar Muthuraman, 2019. "Portfolio Construction by Mitigating Error Amplification: The Bounded-Noise Portfolio," Operations Research, INFORMS, vol. 67(4), pages 965-983, July.
    20. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.25456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.