IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.25456.html
   My bibliography  Save this paper

A Practitioner's Guide to AI+ML in Portfolio Investing

Author

Listed:
  • Mehmet Caner Qingliang Fan

Abstract

In this review, we provide practical guidance on some of the main machine learning tools used in portfolio weight formation. This is not an exhaustive list, but a fraction of the ones used and have some statistical analysis behind it. All this research is essentially tied to precision matrix of excess asset returns. Our main point is that the techniques should be used in conjunction with outlined objective functions. In other words, there should be joint analysis of Machine Learning (ML) technique with the possible portfolio choice-objective functions in terms of test period Sharpe Ratio or returns. The ML method with the best objective function should provide the weight for portfolio formation. Empirically we analyze five time periods of interest, that are out-sample and show performance of some ML-Artificial Intelligence (AI) methods. We see that nodewise regression with Global Minimum Variance portfolio based weights deliver very good Sharpe Ratio and returns across five time periods in this century we analyze. We cover three downturns, and 2 long term investment spans.

Suggested Citation

  • Mehmet Caner Qingliang Fan, 2025. "A Practitioner's Guide to AI+ML in Portfolio Investing," Papers 2509.25456, arXiv.org.
  • Handle: RePEc:arx:papers:2509.25456
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.25456
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.25456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.