IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v251y2025ics030440762500137x.html
   My bibliography  Save this article

Deep learning based residuals in non-linear factor models: Precision matrix estimation of returns with low signal-to-noise ratio

Author

Listed:
  • Caner, Mehmet
  • Daniele, Maurizio

Abstract

This paper introduces a consistent estimator and rate of convergence for the precision matrix of asset returns in large portfolios using a non-linear factor model within the deep learning framework. Our estimator remains valid even in low signal-to-noise ratio environments typical for financial markets and is compatible with the weak factor framework. Our theoretical analysis establishes uniform bounds on expected estimation risk based on deep neural networks for an expanding number of assets. Additionally, we provide a new consistent data-dependent estimator of error covariance in deep neural networks. Our models demonstrate superior accuracy in extensive simulations and the empirical application.

Suggested Citation

  • Caner, Mehmet & Daniele, Maurizio, 2025. "Deep learning based residuals in non-linear factor models: Precision matrix estimation of returns with low signal-to-noise ratio," Journal of Econometrics, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:econom:v:251:y:2025:i:c:s030440762500137x
    DOI: 10.1016/j.jeconom.2025.106083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440762500137X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.106083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:251:y:2025:i:c:s030440762500137x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.