IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.18857.html
   My bibliography  Save this paper

Optimal estimation for regression discontinuity design with binary outcomes

Author

Listed:
  • Takuya Ishihara
  • Masayuki Sawada
  • Kohei Yata

Abstract

We develop a finite-sample optimal estimator for regression discontinuity designs when the outcomes are bounded, including binary outcomes as the leading case. Our finite-sample optimal estimator achieves the exact minimax mean squared error among linear shrinkage estimators with nonnegative weights when the regression function of a bounded outcome lies in a Lipschitz class. Although the original minimax problem involves an iterating (n+1)-dimensional non-convex optimization problem where n is the sample size, we show that our estimator is obtained by solving a convex optimization problem. A key advantage of our estimator is that the Lipschitz constant is the only tuning parameter. We also propose a uniformly valid inference procedure without a large-sample approximation. In a simulation exercise for small samples, our estimator exhibits smaller mean squared errors and shorter confidence intervals than conventional large-sample techniques which may be unreliable when the effective sample size is small. We apply our method to an empirical multi-cutoff design where the sample size for each cutoff is small. In the application, our method yields informative confidence intervals, in contrast to the leading large-sample approach.

Suggested Citation

  • Takuya Ishihara & Masayuki Sawada & Kohei Yata, 2025. "Optimal estimation for regression discontinuity design with binary outcomes," Papers 2509.18857, arXiv.org.
  • Handle: RePEc:arx:papers:2509.18857
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.18857
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.18857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.