IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.10465.html
   My bibliography  Save this paper

Bilevel subsidy-enabled mobility hub network design with perturbed utility coalitional choice-based assignment

Author

Listed:
  • Hai Yang
  • Joseph Y. J. Chow

Abstract

Urban mobility is undergoing rapid transformation with the emergence of new services. Mobility hubs (MHs) have been proposed as physical-digital convergence points, offering a range of public and private mobility options in close proximity. By supporting Mobility-as-a-Service, these hubs can serve as focal points where travel decisions intersect with operator strategies. We develop a bilevel MH platform design model that treats MHs as control levers. The upper level (platform) maximizes revenue or flow by setting subsidies to incentivize last-mile operators; the lower level captures joint traveler-operator decisions with a link-based Perturbed Utility Route Choice (PURC) assignment, yielding a strictly convex quadratic program. We reformulate the bilevel problem to a single-level program via the KKT conditions of the lower level and solve it with a gap-penalty method and an iterative warm-start scheme that exploits the computationally cheap lower-level problem. Numerical experiments on a toy network and a Long Island Rail Road (LIRR) case (244 nodes, 469 links, 78 ODs) show that the method attains sub-1% optimality gaps in minutes. In the base LIRR case, the model allows policymakers to quantify the social surplus value of a MH, or the value of enabling subsidy or regulating the microtransit operator's pricing. Comparing link-based subsidies to hub-based subsidies, the latter is computationally more expensive but offers an easier mechanism for comparison and control.

Suggested Citation

  • Hai Yang & Joseph Y. J. Chow, 2025. "Bilevel subsidy-enabled mobility hub network design with perturbed utility coalitional choice-based assignment," Papers 2509.10465, arXiv.org.
  • Handle: RePEc:arx:papers:2509.10465
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.10465
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xi, Haoning & Aussel, Didier & Liu, Wei & Waller, S.Travis. & Rey, David, 2024. "Single-leader multi-follower games for the regulation of two-sided mobility-as-a-service markets," European Journal of Operational Research, Elsevier, vol. 317(3), pages 718-736.
    2. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    3. Frank, Laura & Dirks, Nicolas & Walther, Grit, 2021. "Improving rural accessibility by locating multimodal mobility hubs," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Arias-Molinares, Daniela & Xu, Yihan & Büttner, Benjamin & Duran-Rodas, David, 2023. "Exploring key spatial determinants for mobility hub placement based on micromobility ridership," Journal of Transport Geography, Elsevier, vol. 110(C).
    5. Huang, Wentao & Jian, Sisi & Rey, David, 2024. "Non-additive network pricing with non-cooperative mobility service providers," European Journal of Operational Research, Elsevier, vol. 318(3), pages 802-824.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiyuan Ren & Joseph Y. J. Chow, 2025. "A data fusion approach for mobility hub impact assessment and location selection: integrating hub usage data into a large-scale mode choice model," Papers 2510.08366, arXiv.org.
    2. Xanthopoulos, Stavros & van der Tuin, Marieke & Sharif Azadeh, Shadi & Correia, Gonçalo Homem de Almeida & van Oort, Niels & Snelder, Maaike, 2024. "Optimization of the location and capacity of shared multimodal mobility hubs to maximize travel utility in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. Wagner, Sebastian & Brandt, Tobias & Neumann, Dirk, 2016. "In free float: Developing Business Analytics support for carsharing providers," Omega, Elsevier, vol. 59(PA), pages 4-14.
    4. Ding, Xiaoshu & Jian, Sisi, 2025. "Joint resource exchange and pricing for intercity multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 194(C).
    5. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    6. Hao, Wu & Martin, Layla, 2022. "Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Akpan, Uduak & Morimoto, Risako, 2022. "An application of Multi-Attribute Utility Theory (MAUT) to the prioritization of rural roads to improve rural accessibility in Nigeria," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Markus Friedrich & Klaus Noekel, 2017. "Modeling intermodal networks with public transport and vehicle sharing systems," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 271-288, September.
    9. Fu, Chenyi & Zhu, Ning & Pinedo, Michael & Ma, Shoufeng, 2025. "Station-based, free-float, or hybrid: An operating mode analysis of a bike-sharing system," Transportation Research Part B: Methodological, Elsevier, vol. 191(C).
    10. Stefan Illgen & Michael Höck, 2020. "Establishing car sharing services in rural areas: a simulation-based fleet operations analysis," Transportation, Springer, vol. 47(2), pages 811-826, April.
    11. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    12. Rahul Nair & Elise Miller-Hooks, 2016. "Equilibrium design of bicycle sharing systems: the case of Washington D.C," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 321-344, August.
    13. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    14. Daniel Villamar & Didier Aussel, 2024. "A bilevel optimization approach of energy transition in freight transport: SOS1 method and application to the Ecuadorian case," Computational Management Science, Springer, vol. 21(2), pages 1-30, December.
    15. Bing Zhang & Zhishan Zhong & Zi Sang & Mingyang Zhang & Yunqiang Xue, 2021. "Two-Level Planning of Customized Bus Routes Based on Uncertainty Theory," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    16. Joy Chang & Miao Yu & Siqian Shen & Ming Xu, 2017. "Location Design and Relocation of a Mixed Car-Sharing Fleet with a CO 2 Emission Constraint," Service Science, INFORMS, vol. 9(3), pages 205-218, September.
    17. Wang, Jun & Wang, Kailai & Zhao, Yuxiang, 2025. "Identifying potential upgradable bus stop locations with on-demand shuttle ridership with VIA data in Jersey City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 196(C).
    18. Kanatlı, Mehmet Ali & Karaer, Özgen, 2022. "Servitization as an alternative business model and its implications on product durability, profitability & environmental impact," European Journal of Operational Research, Elsevier, vol. 301(2), pages 546-560.
    19. Timmer, Sebastian & Merfeld, Katrin & Henkel, Sven, 2023. "Exploring motivations for multimodal commuting: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    20. Huang, Wentao & Jian, Sisi, 2025. "Unveiling coopetition dynamics between shared mobility and public transport: A game-theoretic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.10465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.