IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.01076.html
   My bibliography  Save this paper

Is Noisy Data a Blessing in Disguise? A Distributionally Robust Optimization Perspective

Author

Listed:
  • Chung-Han Hsieh
  • Rong Gan

Abstract

Noisy data are often viewed as a challenge for decision-making. This paper studies a distributionally robust optimization (DRO) that shows how such noise can be systematically incorporated. Rather than applying DRO to the noisy empirical distribution, we construct ambiguity sets over the \emph{latent} distribution by centering a Wasserstein ball at the noisy empirical distribution in the observation space and taking its inverse image through a known noise kernel. We validate this inverse-image construction by deriving a tractable convex reformulation and establishing rigorous statistical guarantees, including finite-sample performance and asymptotic consistency. Crucially, we demonstrate that, under mild conditions, noisy data may be a ``blessing in disguise." Our noisy-data DRO model is less conservative than its direct counterpart, leading to provably higher optimal values and a lower price of ambiguity. In the context of fair resource allocation problems, we demonstrate that this robust approach can induce solutions that are structurally more equitable. Our findings suggest that managers can leverage uncertainty by harnessing noise as a source of robustness rather than treating it as an obstacle, producing more robust and strategically balanced decisions.

Suggested Citation

  • Chung-Han Hsieh & Rong Gan, 2025. "Is Noisy Data a Blessing in Disguise? A Distributionally Robust Optimization Perspective," Papers 2509.01076, arXiv.org.
  • Handle: RePEc:arx:papers:2509.01076
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.01076
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Luhao Zhang & Jincheng Yang & Rui Gao, 2025. "A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization," Operations Research, INFORMS, vol. 73(4), pages 2146-2155, July.
    3. Banerjee, Snehal & Green, Brett, 2015. "Signal or noise? Uncertainty and learning about whether other traders are informed," Journal of Financial Economics, Elsevier, vol. 117(2), pages 398-423.
    4. Violet Xinying Chen & J. N. Hooker, 2023. "A guide to formulating fairness in an optimization model," Annals of Operations Research, Springer, vol. 326(1), pages 581-619, July.
    5. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2011. "The Price of Fairness," Operations Research, INFORMS, vol. 59(1), pages 17-31, February.
    6. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    7. Rui Gao, 2023. "Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality," Operations Research, INFORMS, vol. 71(6), pages 2291-2306, November.
    8. Jun Cai & Jonathan Yu-Meng Li & Tiantian Mao, 2025. "Distributionally Robust Optimization Under Distorted Expectations," Operations Research, INFORMS, vol. 73(2), pages 969-985, March.
    9. Krishnamurty Muralidhar & Rahul Parsa & Rathindra Sarathy, 1999. "A General Additive Data Perturbation Method for Database Security," Management Science, INFORMS, vol. 45(10), pages 1399-1415, October.
    10. Rui Gao & Anton Kleywegt, 2023. "Distributionally Robust Stochastic Optimization with Wasserstein Distance," Mathematics of Operations Research, INFORMS, vol. 48(2), pages 603-655, May.
    11. Jonathan Li & Roy Kwon, 2013. "Portfolio selection under model uncertainty: a penalized moment-based optimization approach," Journal of Global Optimization, Springer, vol. 56(1), pages 131-164, May.
    12. James E. Smith & Robert L. Winkler, 2006. "The Optimizer's Curse: Skepticism and Postdecision Surprise in Decision Analysis," Management Science, INFORMS, vol. 52(3), pages 311-322, March.
    13. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    14. Jose Blanchet & Lin Chen & Xun Yu Zhou, 2022. "Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances," Management Science, INFORMS, vol. 68(9), pages 6382-6410, September.
    15. Hsieh, Chung-Han, 2024. "On solving robust log-optimal portfolio: A supporting hyperplane approximation approach," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1129-1139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    2. Sun, Peng & Zhao, Dongpan & Chen, Qingxin & Yu, Xinyao & Zhu, Ning, 2025. "Distributionally robust optimization for pre-disaster facility location problem with 3D printing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    3. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    4. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    5. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    6. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    7. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    8. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    9. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    10. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    11. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    12. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2024. "Wasserstein distributionally robust surgery scheduling with elective and emergency patients," European Journal of Operational Research, Elsevier, vol. 314(2), pages 509-522.
    13. Guevara, Esnil & Babonneau, Fréderic & Homem-de-Mello, Tito & Moret, Stefano, 2020. "A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty," Applied Energy, Elsevier, vol. 271(C).
    14. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    15. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    16. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    17. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    18. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    19. Xiangyu Han & Yijun Hu & Ran Wang & Linxiao Wei, 2025. "On data-driven robust distortion risk measures for non-negative risks with partial information," Papers 2508.10682, arXiv.org.
    20. Cheng, Chun & Yu, Qinxiao & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2024. "Distributionally robust facility location with uncertain facility capacity and customer demand," Omega, Elsevier, vol. 122(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.01076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.