IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.01076.html
   My bibliography  Save this paper

Is Noisy Data a Blessing in Disguise? A Distributionally Robust Optimization Perspective

Author

Listed:
  • Chung-Han Hsieh
  • Rong Gan

Abstract

Noisy data are often viewed as a challenge for decision-making. This paper studies a distributionally robust optimization (DRO) that shows how such noise can be systematically incorporated. Rather than applying DRO to the noisy empirical distribution, we construct ambiguity sets over the \emph{latent} distribution by centering a Wasserstein ball at the noisy empirical distribution in the observation space and taking its inverse image through a known noise kernel. We validate this inverse-image construction by deriving a tractable convex reformulation and establishing rigorous statistical guarantees, including finite-sample performance and asymptotic consistency. Crucially, we demonstrate that, under mild conditions, noisy data may be a ``blessing in disguise." Our noisy-data DRO model is less conservative than its direct counterpart, leading to provably higher optimal values and a lower price of ambiguity. In the context of fair resource allocation problems, we demonstrate that this robust approach can induce solutions that are structurally more equitable. Our findings suggest that managers can leverage uncertainty by harnessing noise as a source of robustness rather than treating it as an obstacle, producing more robust and strategically balanced decisions.

Suggested Citation

  • Chung-Han Hsieh & Rong Gan, 2025. "Is Noisy Data a Blessing in Disguise? A Distributionally Robust Optimization Perspective," Papers 2509.01076, arXiv.org.
  • Handle: RePEc:arx:papers:2509.01076
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.01076
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.01076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.