IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.20101.html
   My bibliography  Save this paper

A Heterogeneous Spatiotemporal GARCH Model: A Predictive Framework for Volatility in Financial Networks

Author

Listed:
  • Atika Aouri
  • Philipp Otto

Abstract

We introduce a heterogeneous spatiotemporal GARCH model for geostatistical data or processes on networks, e.g., for modelling and predicting financial return volatility across firms in a latent spatial framework. The model combines classical GARCH(p, q) dynamics with spatially correlated innovations and spatially varying parameters, estimated using local likelihood methods. Spatial dependence is introduced through a geostatistical covariance structure on the innovation process, capturing contemporaneous cross-sectional correlation. This dependence propagates into the volatility dynamics via the recursive GARCH structure, allowing the model to reflect spatial spillovers and contagion effects in a parsimonious and interpretable way. In addition, this modelling framework allows for spatial volatility predictions at unobserved locations. In an empirical application, we demonstrate how the model can be applied to financial stock networks. Unlike other spatial GARCH models, our framework does not rely on a fixed adjacency matrix; instead, spatial proximity is defined in a proxy space constructed from balance sheet characteristics. Using daily log returns of 50 publicly listed firms over a one-year period, we evaluate the model's predictive performance in a cross-validation study.

Suggested Citation

  • Atika Aouri & Philipp Otto, 2025. "A Heterogeneous Spatiotemporal GARCH Model: A Predictive Framework for Volatility in Financial Networks," Papers 2508.20101, arXiv.org.
  • Handle: RePEc:arx:papers:2508.20101
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.20101
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.20101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.