IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.19192.html
   My bibliography  Save this paper

Profit-Aware Graph Framework for Cross-Platform Ride-Sharing: Analyzing Allocation Mechanisms and Efficiency Gains

Author

Listed:
  • Xin Dong
  • Jose Ventura
  • Vikash V. Gayah

Abstract

Ride-hailing platforms (e.g., Uber, Lyft) have transformed urban mobility by enabling ride-sharing, which holds considerable promise for reducing both travel costs and total vehicle miles traveled (VMT). However, the fragmentation of these platforms impedes system-wide efficiency by restricting ride-matching to intra-platform requests. Cross-platform collaboration could unlock substantial efficiency gains, but its realization hinges on fair and sustainable profit allocation mechanisms that can align the incentives of competing platforms. This study introduces a graph-theoretic framework that embeds profit-aware constraints into network optimization, facilitating equitable and efficient cross-platform ride-sharing. Within this framework, we evaluate three allocation schemes -- equal-profit-based, market-share-based, and Shapley-value-based -- through large-scale simulations. Results show that the Shapley-value-based mechanism consistently outperforms the alternatives across six key metrics. Notably, system efficiency and rider service quality improve with increasing demand, reflecting clear economies of scale. The observed economies of scale, along with their diminishing returns, can be understood with the structural evolution of rider-request graphs, where super-linear edge growth expands feasible matches and sub-linear degree scaling limits per-rider connectivity.

Suggested Citation

  • Xin Dong & Jose Ventura & Vikash V. Gayah, 2025. "Profit-Aware Graph Framework for Cross-Platform Ride-Sharing: Analyzing Allocation Mechanisms and Efficiency Gains," Papers 2508.19192, arXiv.org.
  • Handle: RePEc:arx:papers:2508.19192
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.19192
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.19192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.