IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.18577.html
   My bibliography  Save this paper

Advancing Financial Engineering with Foundation Models: Progress, Applications, and Challenges

Author

Listed:
  • Liyuan Chen
  • Shuoling Liu
  • Jiangpeng Yan
  • Xiaoyu Wang
  • Henglin Liu
  • Chuang Li
  • Kecheng Jiao
  • Jixuan Ying
  • Yang Veronica Liu
  • Qiang Yang
  • Xiu Li

Abstract

The advent of foundation models (FMs) - large-scale pre-trained models with strong generalization capabilities - has opened new frontiers for financial engineering. While general-purpose FMs such as GPT-4 and Gemini have demonstrated promising performance in tasks ranging from financial report summarization to sentiment-aware forecasting, many financial applications remain constrained by unique domain requirements such as multimodal reasoning, regulatory compliance, and data privacy. These challenges have spurred the emergence of Financial Foundation Models (FFMs) - a new class of models explicitly designed for finance. This survey presents a comprehensive overview of FFMs, with a taxonomy spanning three key modalities: Financial Language Foundation Models (FinLFMs), Financial Time-Series Foundation Models (FinTSFMs), and Financial Visual-Language Foundation Models (FinVLFMs). We review their architectures, training methodologies, datasets, and real-world applications. Furthermore, we identify critical challenges in data availability, algorithmic scalability, and infrastructure constraints, and offer insights into future research opportunities. We hope this survey serves as both a comprehensive reference for understanding FFMs and a practical roadmap for future innovation. An updated collection of FFM-related publications and resources will be maintained on our website https://github.com/FinFM/Awesome-FinFMs.

Suggested Citation

  • Liyuan Chen & Shuoling Liu & Jiangpeng Yan & Xiaoyu Wang & Henglin Liu & Chuang Li & Kecheng Jiao & Jixuan Ying & Yang Veronica Liu & Qiang Yang & Xiu Li, 2025. "Advancing Financial Engineering with Foundation Models: Progress, Applications, and Challenges," Papers 2507.18577, arXiv.org.
  • Handle: RePEc:arx:papers:2507.18577
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.18577
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingming Chen & Yifan Tang & Qi Qi & Hongyi Dai & Yi Lin & Chengxiu Ling & Tenglong Li, 2025. "Enhancing stock timing predictions based on multimodal architecture: Leveraging large language models (LLMs) for text quality improvement," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-14, June.
    2. Hanshuang Tong & Jun Li & Ning Wu & Ming Gong & Dongmei Zhang & Qi Zhang, 2024. "Ploutos: Towards interpretable stock movement prediction with financial large language model," Papers 2403.00782, arXiv.org.
    3. Paul Glasserman & Caden Lin, 2023. "Assessing Look-Ahead Bias in Stock Return Predictions Generated By GPT Sentiment Analysis," Papers 2309.17322, arXiv.org.
    4. Junhua Liu, 2024. "A Survey of Financial AI: Architectures, Advances and Open Challenges," Papers 2411.12747, arXiv.org.
    5. Dong, Mengming Michael & Stratopoulos, Theophanis C. & Wang, Victor Xiaoqi, 2024. "A scoping review of ChatGPT research in accounting and finance," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).
    6. Dowling, Michael & Lucey, Brian, 2023. "ChatGPT for (Finance) research: The Bananarama Conjecture," Finance Research Letters, Elsevier, vol. 53(C).
    7. repec:osf:osfxxx:ahkd3_v1 is not listed on IDEAS
    8. Yi Yang & Yixuan Tang & Kar Yan Tam, 2023. "InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning," Papers 2309.13064, arXiv.org.
    9. Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014. "Good debt or bad debt: Detecting semantic orientations in economic texts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
    10. Katharine Sanderson, 2023. "GPT-4 is here: what scientists think," Nature, Nature, vol. 615(7954), pages 773-773, March.
    11. Han Ding & Yinheng Li & Junhao Wang & Hang Chen, 2024. "Large Language Model Agent in Financial Trading: A Survey," Papers 2408.06361, arXiv.org.
    12. Ko, Hyungjin & Lee, Jaewook, 2024. "Can ChatGPT improve investment decisions? From a portfolio management perspective," Finance Research Letters, Elsevier, vol. 64(C).
    13. Alejandro Lopez-Lira, 2025. "Can Large Language Models Trade? Testing Financial Theories with LLM Agents in Market Simulations," Papers 2504.10789, arXiv.org.
    14. Lee, Heungmin, 2025. "Unleashing the Potential of Large Language Models in the Finance Industry," OSF Preprints ahkd3, Center for Open Science.
    15. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    16. Zihan Dong & Xinyu Fan & Zhiyuan Peng, 2024. "FNSPID: A Comprehensive Financial News Dataset in Time Series," Papers 2402.06698, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuewen Han & Neng Wang & Shangkun Che & Hongyang Yang & Kunpeng Zhang & Sean Xin Xu, 2024. "Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research," Papers 2411.04788, arXiv.org.
    2. Dong, Mengming Michael & Stratopoulos, Theophanis C. & Wang, Victor Xiaoqi, 2024. "A scoping review of ChatGPT research in accounting and finance," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).
    3. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    4. Shijie Han & Jingshu Zhang & Yiqing Shen & Kaiyuan Yan & Hongguang Li, 2025. "FinSphere, a Real-Time Stock Analysis Agent Powered by Instruction-Tuned LLMs and Domain Tools," Papers 2501.12399, arXiv.org, revised Jul 2025.
    5. Song Tong & Kai Mao & Zhen Huang & Yukun Zhao & Kaiping Peng, 2024. "Automating psychological hypothesis generation with AI: when large language models meet causal graph," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    6. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
    7. Julian Junyan Wang & Victor Xiaoqi Wang, 2025. "Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks," Papers 2503.16974, arXiv.org, revised Sep 2025.
    8. Jeong, Woojin & Park, Seongwan & Lee, Seungyun & Son, Bumho & Lee, Jaewook & Ko, Hyungjin, 2024. "Influence and predictive power of sentiment: Evidence from the lithium market," Finance Research Letters, Elsevier, vol. 68(C).
    9. Chiu, I-Chan & Hung, Mao-Wei, 2025. "Finance-specific large language models: Advancing sentiment analysis and return prediction with LLaMA 2," Pacific-Basin Finance Journal, Elsevier, vol. 90(C).
    10. Gregory, Gadzinski & Vito, Liuzzi, 2024. "ChatGPT: A canary in the coal mine or a parrot in the echo chamber? Detecting fraud with LLM: The case of FTX," Finance Research Letters, Elsevier, vol. 70(C).
    11. Junhua Liu, 2024. "A Survey of Financial AI: Architectures, Advances and Open Challenges," Papers 2411.12747, arXiv.org.
    12. Lars Hornuf & David J. Streich & Niklas Töllich, 2025. "Making GenAI Smarter: Evidence from a Portfolio Allocation Experiment," CESifo Working Paper Series 11862, CESifo.
    13. Minh Tam Tammy Schlosky & Serkan Karadas & Sterling Raskie, 2024. "ChatGPT, Help! I Am in Financial Trouble," JRFM, MDPI, vol. 17(6), pages 1-39, June.
    14. Song, Piaopeng & Lu, Hanglin & Zhang, Yongjie, 2024. "Unveiling tone manipulation in MD&A: Evidence from ChatGPT experiments," Finance Research Letters, Elsevier, vol. 67(PA).
    15. Perlin, Marcelo S. & Foguesatto, Cristian R. & Müller, Fernanda M. & Righi, Marcelo B., 2025. "Can AI beat a naive portfolio? An experiment with anonymized data," Finance Research Letters, Elsevier, vol. 78(C).
    16. Joel R. Bock, 2024. "Generating long-horizon stock "buy" signals with a neural language model," Papers 2410.18988, arXiv.org.
    17. Julian Junyan Wang & Victor Xiaoqi Wang, 2024. "Leveraging Large Language Models to Democratize Access to Costly Datasets for Academic Research," Papers 2412.02065, arXiv.org, revised Sep 2025.
    18. Alejandro Lopez-Lira & Jihoon Kwon & Sangwoon Yoon & Jy-yong Sohn & Chanyeol Choi, 2025. "Bridging Language Models and Financial Analysis," Papers 2503.22693, arXiv.org.
    19. Jean Lee & Nicholas Stevens & Soyeon Caren Han & Minseok Song, 2024. "A Survey of Large Language Models in Finance (FinLLMs)," Papers 2402.02315, arXiv.org.
    20. Zonghan Wu & Congyuan Zou & Junlin Wang & Chenhan Wang & Hangjing Yang & Yilei Shao, 2025. "Towards Competent AI for Fundamental Analysis in Finance: A Benchmark Dataset and Evaluation," Papers 2506.07315, arXiv.org, revised Nov 2025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.18577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.