IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.17162.html
   My bibliography  Save this paper

Optimal Trading under Instantaneous and Persistent Price Impact, Predictable Returns and Multiscale Stochastic Volatility

Author

Listed:
  • Patrick Chan
  • Ronnie Sircar
  • Iosif Zimbidis

Abstract

We consider a dynamic portfolio optimization problem that incorporates predictable returns, instantaneous transaction costs, price impact, and stochastic volatility, extending the classical results of Garleanu and Pedersen (2013), which assume constant volatility. Constructing the optimal portfolio strategy in this general setting is challenging due to the nonlinear nature of the resulting Hamilton-Jacobi-Bellman (HJB) equations. To address this, we propose a multi-scale volatility expansion that captures stochastic volatility dynamics across different time scales. Specifically, the analysis involves a singular perturbation for the fast mean-reverting volatility factor and a regular perturbation for the slow-moving factor. We also introduce an approximation for small price impact and demonstrate its numerical accuracy. We formally derive asymptotic approximations up to second order and use Monte Carlo simulations to show how incorporating these corrections improves the Profit and Loss (PnL) of the resulting portfolio strategy.

Suggested Citation

  • Patrick Chan & Ronnie Sircar & Iosif Zimbidis, 2025. "Optimal Trading under Instantaneous and Persistent Price Impact, Predictable Returns and Multiscale Stochastic Volatility," Papers 2507.17162, arXiv.org.
  • Handle: RePEc:arx:papers:2507.17162
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.17162
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filippo Passerini & Samuel E. Vazquez, 2015. "Optimal Trading with Alpha Predictors," Papers 1501.03756, arXiv.org, revised Jan 2015.
    2. repec:hal:wpaper:hal-03835948 is not listed on IDEAS
    3. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584, January.
    4. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    5. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    6. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    7. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    8. Xiaoqiang Cai & Gen Yu, 2025. "Bayesian learning in dynamic portfolio selection under a minimax rule," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(1), pages 287-324, March.
    9. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    10. Xavier Brokmann & David Itkin & Johannes Muhle‐Karbe & Peter Schmidt, 2025. "Tackling nonlinear price impact with linear strategies," Mathematical Finance, Wiley Blackwell, vol. 35(2), pages 422-440, April.
    11. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    12. Gârleanu, Nicolae & Pedersen, Lasse Heje, 2016. "Dynamic portfolio choice with frictions," Journal of Economic Theory, Elsevier, vol. 165(C), pages 487-516.
    13. Huyên Pham & Xiaoli Wei & Chao Zhou, 2022. "Portfolio diversification and model uncertainty: A robust dynamic mean‐variance approach," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 349-404, January.
    14. Brokmann, Xavier & Itkin, David & Muhle-Karbe, Johannes & Schmidt, Peter, 2025. "Tackling nonlinear price impact with linear strategies," LSE Research Online Documents on Economics 125888, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Boguslavskaya & Dmitry Muravey, 2015. "An explicit solution for optimal investment in Heston model," Papers 1505.02431, arXiv.org, revised May 2015.
    2. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    3. An Chen & Thai Nguyen & Manuel Rach, 2021. "A collective investment problem in a stochastic volatility environment: The impact of sharing rules," Annals of Operations Research, Springer, vol. 302(1), pages 85-109, July.
    4. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    5. Maxim Bichuch & Jean-Pierre Fouque, 2019. "Optimal Investment with Correlated Stochastic Volatility Factors," Papers 1908.07626, arXiv.org, revised Nov 2022.
    6. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2018. "Dynamic derivative strategies with stochastic interest rates and model uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 49-71.
    7. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    8. Marcos Escobar-Anel & Ben Spies & Rudi Zagst, 2024. "Optimal consumption and investment in general affine GARCH models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 987-1026, September.
    9. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2015. "Robust portfolio choice with derivative trading under stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 142-157.
    10. Dmitry Muravey, 2017. "Optimal investment problem with M-CEV model: closed form solution and applications to the algorithmic trading," Papers 1703.01574, arXiv.org, revised Jul 2018.
    11. Cheng, Yuyang & Escobar-Anel, Marcos, 2023. "A class of portfolio optimization solvable problems," Finance Research Letters, Elsevier, vol. 52(C).
    12. de Kort, J. & Vellekoop, M.H., 2017. "Existence of optimal consumption strategies in markets with longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 107-121.
    13. Branger, Nicole & Muck, Matthias & Seifried, Frank Thomas & Weisheit, Stefan, 2017. "Optimal portfolios when variances and covariances can jump," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 59-89.
    14. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    15. Andrew L. Allan & Anna P. Kwossek & Chong Liu & David J. Promel, 2025. "Pathwise analysis of log-optimal portfolios," Papers 2507.18232, arXiv.org.
    16. Yan, Tingjin & Han, Jinhui & Ma, Guiyuan & Siu, Chi Chung, 2023. "Dynamic asset-liability management with frictions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 57-83.
    17. Marcos Escobar & Sebastian Ferrando & Alexey Rubtsov, 2017. "Optimal investment under multi-factor stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 241-260, February.
    18. Maxim Bichuch & Jean‐Pierre Fouque, 2023. "Optimal investment with correlated stochastic volatility factors," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 342-369, April.
    19. Ruimeng Hu, 2018. "Asymptotic Optimal Portfolio in Fast Mean-reverting Stochastic Environments," Papers 1803.07720, arXiv.org, revised Jan 2019.
    20. Jean-Pierre Fouque & Ruimeng Hu, 2019. "Multiscale Asymptotic Analysis for Portfolio Optimization under Stochastic Environment," Papers 1902.06883, arXiv.org, revised Sep 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.17162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.