IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.17099.html
   My bibliography  Save this paper

Weather-Aware AI Systems versus Route-Optimization AI: A Comprehensive Analysis of AI Applications in Transportation Productivity

Author

Listed:
  • Tatsuru Kikuchi

Abstract

While recent research demonstrates that AI route-optimization systems improve taxi driver productivity by 14\%, this study reveals that such findings capture only a fraction of AI's potential in transportation. We examine comprehensive weather-aware AI systems that integrate deep learning meteorological prediction with machine learning positioning optimization, comparing their performance against traditional operations and route-only AI approaches. Using simulation data from 10,000 taxi operations across varied weather conditions, we find that weather-aware AI systems increase driver revenue by 107.3\%, compared to 14\% improvements from route-optimization alone. Weather prediction contributes the largest individual productivity gain, with strong correlations between meteorological conditions and demand ($r=0.575$). Economic analysis reveals annual earnings increases of 13.8 million yen per driver, with rapid payback periods and superior return on investment. These findings suggest that current AI literature significantly underestimates AI's transformative potential by focusing narrowly on routing algorithms, while weather intelligence represents an untapped \$8.9 billion market opportunity. Our results indicate that future AI implementations should adopt comprehensive approaches that address multiple operational challenges simultaneously rather than optimizing isolated functions.

Suggested Citation

  • Tatsuru Kikuchi, 2025. "Weather-Aware AI Systems versus Route-Optimization AI: A Comprehensive Analysis of AI Applications in Transportation Productivity," Papers 2507.17099, arXiv.org.
  • Handle: RePEc:arx:papers:2507.17099
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.17099
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.17099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.