IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.14389.html
   My bibliography  Save this paper

Regional compositional trajectories and structural change: A spatiotemporal multivariate autoregressive framework

Author

Listed:
  • Matthias Eckardt
  • Philipp Otto

Abstract

Compositional data, such as regional shares of economic sectors or property transactions, are central to understanding structural change in economic systems across space and time. This paper introduces a spatiotemporal multivariate autoregressive model tailored for panel data with composition-valued responses at each areal unit and time point. The proposed framework enables the joint modelling of temporal dynamics and spatial dependence under compositional constraints and is estimated via a quasi maximum likelihood approach. We build on recent theoretical advances to establish identifiability and asymptotic properties of the estimator when both the number of regions and time points grow. The utility and flexibility of the model are demonstrated through two applications: analysing property transaction compositions in an intra-city housing market (Berlin), and regional sectoral compositions in Spain's economy. These case studies highlight how the proposed framework captures key features of spatiotemporal economic processes that are often missed by conventional methods.

Suggested Citation

  • Matthias Eckardt & Philipp Otto, 2025. "Regional compositional trajectories and structural change: A spatiotemporal multivariate autoregressive framework," Papers 2507.14389, arXiv.org.
  • Handle: RePEc:arx:papers:2507.14389
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.14389
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thi Huong An Nguyen & Christine Thomas-Agnan & Thibault Laurent & Anne Ruiz-Gazen, 2021. "A simultaneous spatial autoregressive model for compositional data," Spatial Economic Analysis, Taylor & Francis Journals, vol. 16(2), pages 161-175, April.
    2. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    3. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    4. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.
    5. Thibault Laurent & Christine Thomas-Agnan & Anne Ruiz-Gazen, 2023. "Covariates impacts in spatial autoregressive models for compositional data," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-23, December.
    6. Thomas-Agnan, Christine & Laurent, Thibault & Ruiz-Gazen, Anne & Nguyen, T.H.A & Chakir, Raja & Lungarska, Anna, 2020. "Spatial simultaneous autoregressive models for compositional data: Application to land use," TSE Working Papers 20-1098, Toulouse School of Economics (TSE).
    7. Michail Tsagris & Simon Preston & Andrew T. A. Wood, 2016. "Improved Classification for Compositional Data Using the α-transformation," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 243-261, July.
    8. Yang, Kai & Lee, Lung-fei, 2017. "Identification and QML estimation of multivariate and simultaneous equations spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 196(1), pages 196-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thibault Laurent & Christine Thomas-Agnan & Anne Ruiz-Gazen, 2023. "Covariates impacts in spatial autoregressive models for compositional data," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-23, December.
    2. Dargel, Lukas & Thomas-Agnan, Christine, 2023. "Share-ratio interpretations of compositional regression models," TSE Working Papers 23-1456, Toulouse School of Economics (TSE), revised 20 Sep 2023.
    3. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston.
    4. Huang, Danyang & Hu, Wei & Jing, Bingyi & Zhang, Bo, 2023. "Grouped spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    5. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    6. Yang, Kai & Lee, Lung-fei, 2021. "Estimation of dynamic panel spatial vector autoregression: Stability and spatial multivariate cointegration," Journal of Econometrics, Elsevier, vol. 221(2), pages 337-367.
    7. Philipp Otto, 2022. "A Multivariate Spatial and Spatiotemporal ARCH Model," Papers 2204.12472, arXiv.org.
    8. Wang, Dieter & Andrée, Bo Pieter Johannes & Chamorro, Andres Fernando & Spencer, Phoebe Girouard, 2022. "Transitions into and out of food insecurity: A probabilistic approach with panel data evidence from 15 countries," World Development, Elsevier, vol. 159(C).
    9. Wang,Dieter & Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Spencer,Phoebe Girouard, 2020. "Stochastic Modeling of Food Insecurity," Policy Research Working Paper Series 9413, The World Bank.
    10. Danyang Huang & Ziyi Kong & Shuyuan Wu & Hansheng Wang, 2024. "Privacy-Protected Spatial Autoregressive Model," Papers 2403.16773, arXiv.org, revised Jul 2024.
    11. Dargel, Lukas & Thomas-Agnan, Christine, 2024. "Pairwise share ratio interpretations of compositional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    12. Pu, Dan & Fang, Kuangnan & Lan, Wei & Yu, Jihai & Zhang, Qingzhao, 2024. "Multivariate spatiotemporal models with low rank coefficient matrix," Journal of Econometrics, Elsevier, vol. 246(1).
    13. Yannis Pantazis & Michail Tsagris & Andrew T. A. Wood, 2019. "Gaussian Asymptotic Limits for the α-transformation in the Analysis of Compositional Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 63-82, February.
    14. repec:rri:wpaper:201303 is not listed on IDEAS
    15. Atems, Bebonchu, 2013. "The spatial dynamics of growth and inequality: Evidence using U.S. county-level data," Economics Letters, Elsevier, vol. 118(1), pages 19-22.
    16. Li, Kunpeng & Lin, Wei, 2024. "Threshold spatial autoregressive model," Journal of Econometrics, Elsevier, vol. 244(1).
    17. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    18. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2015. "Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients," CESifo Working Paper Series 5428, CESifo.
    19. Bottasso, Anna & Conti, Maurizio & Ferrari, Claudio & Tei, Alessio, 2014. "Ports and regional development: A spatial analysis on a panel of European regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 44-55.
    20. Burnett, J. Wesley & Lacombe, Donald J. & Wallander, Steven, . "Spatial and Temporal Spillovers in US Cropland Values," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 49(01).
    21. Carmela D'Avino & Mimoza Shabani, 2025. "Spatial Dependence via the Internal Capital Markets of U.S. Global Banks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 57(1), pages 69-105, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.14389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.