IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.14389.html
   My bibliography  Save this paper

Regional compositional trajectories and structural change: A spatiotemporal multivariate autoregressive framework

Author

Listed:
  • Matthias Eckardt
  • Philipp Otto

Abstract

Compositional data, such as regional shares of economic sectors or property transactions, are central to understanding structural change in economic systems across space and time. This paper introduces a spatiotemporal multivariate autoregressive model tailored for panel data with composition-valued responses at each areal unit and time point. The proposed framework enables the joint modelling of temporal dynamics and spatial dependence under compositional constraints and is estimated via a quasi maximum likelihood approach. We build on recent theoretical advances to establish identifiability and asymptotic properties of the estimator when both the number of regions and time points grow. The utility and flexibility of the model are demonstrated through two applications: analysing property transaction compositions in an intra-city housing market (Berlin), and regional sectoral compositions in Spain's economy. These case studies highlight how the proposed framework captures key features of spatiotemporal economic processes that are often missed by conventional methods.

Suggested Citation

  • Matthias Eckardt & Philipp Otto, 2025. "Regional compositional trajectories and structural change: A spatiotemporal multivariate autoregressive framework," Papers 2507.14389, arXiv.org.
  • Handle: RePEc:arx:papers:2507.14389
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.14389
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.14389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.