IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.10140.html
   My bibliography  Save this paper

The Effects of Flipped Classrooms in Higher Education: A Causal Machine Learning Analysis

Author

Listed:
  • Daniel Czarnowske
  • Florian Heiss
  • Theresa M. A. Schmitz
  • Amrei Stammann

Abstract

This study uses double/debiased machine learning (DML) to evaluate the impact of transitioning from lecture-based blended teaching to a flipped classroom concept. Our findings indicate effects on students' self-conception, procrastination, and enjoyment. We do not find significant positive effects on exam scores, passing rates, or knowledge retention. This can be explained by the insufficient use of the instructional approach that we can identify with uniquely detailed usage data and highlights the need for additional teaching strategies. Methodologically, we propose a powerful DML approach that acknowledges the latent structure inherent in Likert scale variables and, hence, aligns with psychometric principles.

Suggested Citation

  • Daniel Czarnowske & Florian Heiss & Theresa M. A. Schmitz & Amrei Stammann, 2025. "The Effects of Flipped Classrooms in Higher Education: A Causal Machine Learning Analysis," Papers 2507.10140, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2507.10140
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.10140
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    2. De Paola, Maria & Gioia, Francesca & Scoppa, Vincenzo, 2023. "Online teaching, procrastination and student achievement," Economics of Education Review, Elsevier, vol. 94(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    3. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    4. Anil Kumar, 2018. "Do Restrictions on Home Equity Extraction Contribute to Lower Mortgage Defaults? Evidence from a Policy Discontinuity at the Texas Border," American Economic Journal: Economic Policy, American Economic Association, vol. 10(1), pages 268-297, February.
    5. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    6. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    7. Daniel Paravisini & Veronica Rappoport & Philipp Schnabl & Daniel Wolfenzon, 2015. "Dissecting the Effect of Credit Supply on Trade: Evidence from Matched Credit-Export Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 333-359.
    8. Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
    9. Alexandre Belloni & Victor Chernozhukov, 2011. "High Dimensional Sparse Econometric Models: An Introduction," Papers 1106.5242, arXiv.org, revised Sep 2011.
    10. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
    11. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    12. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Nelson, Kelly P. & Parton, Lee C. & Brown, Zachary S., 2022. "Biofuels policy and innovation impacts: Evidence from biofuels and agricultural patent indicators," Energy Policy, Elsevier, vol. 162(C).
    14. Sauvenier, Mathieu & Van Bellegem, Sébastien, 2023. "Direction Identification and Minimax Estimation by Generalized Eigenvalue Problem in High Dimensional Sparse Regression," LIDAM Discussion Papers CORE 2023005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    16. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    17. Caballero, Julián, 2021. "Corporate dollar debt and depreciations: All’s well that ends well?," Journal of Banking & Finance, Elsevier, vol. 130(C).
    18. Michela Carlana & Eliana La Ferrara, 2025. "Apart but Connected: Online Tutoring, Cognitive Outcomes, and Soft Skills," American Economic Review, American Economic Association, vol. 115(10), pages 3487-3513, October.
    19. Novella, Rafael & Rosas-Shady, David & Freund, Richard, 2024. "Is online job training for all? Experimental evidence on the effects of a Coursera program in Costa Rica," Journal of Development Economics, Elsevier, vol. 169(C).
    20. Chen, Daniel L. & Levonyan, Vardges & Yeh, Susan, 2016. "Policies Affect Preferences: Evidence from Random Variation in Abortion Jurisprudence," IAST Working Papers 16-58, Institute for Advanced Study in Toulouse (IAST).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.10140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.