IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.09916.html
   My bibliography  Save this paper

Solving dynamic portfolio selection problems via score-based diffusion models

Author

Listed:
  • Ahmad Aghapour
  • Erhan Bayraktar
  • Fengyi Yuan

Abstract

In this paper, we tackle the dynamic mean-variance portfolio selection problem in a {\it model-free} manner, based on (generative) diffusion models. We propose using data sampled from the real model $\mathbb P$ (which is unknown) with limited size to train a generative model $\mathbb Q$ (from which we can easily and adequately sample). With adaptive training and sampling methods that are tailor-made for time series data, we obtain quantification bounds between $\mathbb P$ and $\mathbb Q$ in terms of the adapted Wasserstein metric $\mathcal A W_2$. Importantly, the proposed adapted sampling method also facilitates {\it conditional sampling}. In the second part of this paper, we provide the stability of the mean-variance portfolio optimization problems in $\mathcal A W _2$. Then, combined with the error bounds and the stability result, we propose a policy gradient algorithm based on the generative environment, in which our innovative adapted sampling method provides approximate scenario generators. We illustrate the performance of our algorithm on both simulated and real data. For real data, the algorithm based on the generative environment produces portfolios that beat several important baselines, including the Markowitz portfolio, the equal weight (naive) portfolio, and S\&P 500.

Suggested Citation

  • Ahmad Aghapour & Erhan Bayraktar & Fengyi Yuan, 2025. "Solving dynamic portfolio selection problems via score-based diffusion models," Papers 2507.09916, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.09916
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.09916
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.