IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.11856.html
   My bibliography  Save this paper

Portfolio Optimization using Predictive Auxiliary Classifier Generative Adversarial Networks with Measuring Uncertainty

Author

Listed:
  • Jiwook Kim
  • Minhyeok Lee

Abstract

In financial engineering, portfolio optimization has been of consistent interest. Portfolio optimization is a process of modulating asset distributions to maximize expected returns and minimize risks. To obtain the expected returns, deep learning models have been explored in recent years. However, due to the deterministic nature of the models, it is difficult to consider the risk of portfolios because conventional deep learning models do not know how reliable their predictions can be. To address this limitation, this paper proposes a probabilistic model, namely predictive auxiliary classifier generative adversarial networks (PredACGAN). The proposed PredACGAN utilizes the characteristic of the ACGAN framework in which the output of the generator forms a distribution. While ACGAN has not been employed for predictive models and is generally utilized for image sample generation, this paper proposes a method to use the ACGAN structure for a probabilistic and predictive model. Additionally, an algorithm to use the risk measurement obtained by PredACGAN is proposed. In the algorithm, the assets that are predicted to be at high risk are eliminated from the investment universe at the rebalancing moment. Therefore, PredACGAN considers both return and risk to optimize portfolios. The proposed algorithm and PredACGAN have been evaluated with daily close price data of S&P 500 from 1990 to 2020. Experimental scenarios are assumed to rebalance the portfolios monthly according to predictions and risk measures with PredACGAN. As a result, a portfolio using PredACGAN exhibits 9.123% yearly returns and a Sharpe ratio of 1.054, while a portfolio without considering risk measures shows 1.024% yearly returns and a Sharpe ratio of 0.236 in the same scenario. Also, the maximum drawdown of the proposed portfolio is lower than the portfolio without PredACGAN.

Suggested Citation

  • Jiwook Kim & Minhyeok Lee, 2023. "Portfolio Optimization using Predictive Auxiliary Classifier Generative Adversarial Networks with Measuring Uncertainty," Papers 2304.11856, arXiv.org.
  • Handle: RePEc:arx:papers:2304.11856
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.11856
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    2. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    3. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    4. Dev Shah & Haruna Isah & Farhana Zulkernine, 2019. "Stock Market Analysis: A Review and Taxonomy of Prediction Techniques," IJFS, MDPI, vol. 7(2), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2024. "Forecasting relative returns for S&P 500 stocks using machine learning," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-16, December.
    3. Shalini Sharma & Víctor Elvira & Emilie Chouzenoux & Angshul Majumdar, 2021. "Recurrent Dictionary Learning for State-Space Models with an Application in Stock Forecasting," Post-Print hal-03184841, HAL.
    4. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    5. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    6. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    7. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    8. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    9. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    10. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    11. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    12. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    13. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    14. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    15. Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022. "Voting: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
    16. Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
    17. Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
    18. Barua, Ronil & Sharma, Anil K., 2022. "Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions," Finance Research Letters, Elsevier, vol. 49(C).
    19. Mohammad Zoynul Abedin & Mahmudul Hasan Moon & M. Kabir Hassan & Petr Hajek, 2025. "Deep learning-based exchange rate prediction during the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 345(2), pages 1335-1386, February.
    20. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.11856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.