Norms Based on Generalized Expected-Shortfalls and Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
- Yongjae Lee & Min Jeong Kim & Jang Ho Kim & Ju Ri Jang & Woo Chang Kim, 2020. "Sparse and robust portfolio selection via semi-definite relaxation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 687-699, May.
- Alois Pichler, 2024. "Connection between higher order measures of risk and stochastic dominance," Computational Management Science, Springer, vol. 21(2), pages 1-28, December.
- Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
- Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Longyu & Wang, Yunyun & Li, Wenyue & Zhang, Zhimin, 2025. "Multi-period mean–variance portfolio optimization with capital injections," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 400-412.
- Wu, Zhongming & Sun, Kexin & Ge, Zhili & Allen-Zhao, Zhihua & Zeng, Tieyong, 2024. "Sparse portfolio optimization via ℓ1 over ℓ2 regularization," European Journal of Operational Research, Elsevier, vol. 319(3), pages 820-833.
- Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
- Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024.
"Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem,"
Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
- Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean-Variance Efficient Large Portfolios : A Simple Machine Learning Heuristic Technique based on the Two-Fund Separation Theorem," Post-Print hal-04514343, HAL.
- Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
- Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2025.
- Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
- Gaete, Michael & Herrera, Rodrigo, 2023.
"Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach,"
Journal of Commodity Markets, Elsevier, vol. 32(C).
- Gaete, Michael & Herrera, Rodrigo, 2022. "Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach," MPRA Paper 115641, University Library of Munich, Germany.
- Stelios Arvanitis, 2025. "Norm Constrained Empirical Portfolio Optimization with Stochastic Dominance: Robust Optimization Non-Asymptotics," Working Paper 1533, Economics Department, Queen's University.
- Ahmad Mousavi & George Michailidis, 2025. "Cardinality constrained mean-variance portfolios: a penalty decomposition algorithm," Computational Optimization and Applications, Springer, vol. 90(3), pages 631-648, April.
- Farshad Noravesh, 2022. "Sparse Non-Convex Optimization For Higher Moment Portfolio Management," Papers 2201.01227, arXiv.org, revised Jan 2022.
- Li, Xuepeng & Xu, Fengmin & Jing, Kui, 2022. "Robust enhanced indexation with ESG: An empirical study in the Chinese Stock Market," Economic Modelling, Elsevier, vol. 107(C).
- Haochen Luo & Yuan Zhang & Chen Liu, 2025. "EFS: Evolutionary Factor Searching for Sparse Portfolio Optimization Using Large Language Models," Papers 2507.17211, arXiv.org.
- Pier Francesco Procacci & Tomaso Aste, 2022. "Portfolio optimization with sparse multivariate modeling," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 445-465, October.
- Hyunglip Bae & Haeun Jeon & Minsu Park & Yongjae Lee & Woo Chang Kim, 2025. "A Cholesky decomposition-based asset selection heuristic for sparse tangent portfolio optimization," Papers 2502.11701, arXiv.org.
- Qiuqi Wang & Ruodu Wang & Johanna Ziegel, 2022. "E-backtesting," Papers 2209.00991, arXiv.org, revised Dec 2024.
- Shi, Fangquan & Shu, Lianjie & He, Fangyi & Huang, Wenpo, 2025. "Improving minimum-variance portfolio through shrinkage of large covariance matrices," Economic Modelling, Elsevier, vol. 144(C).
- Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
- Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
- Dominique Guégan & Wayne Tarrant, 2012.
"On the necessity of five risk measures,"
Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
- Dominique Guegan & Wayne Tarrant, 2010. "On the necessity of five risk measures," Documents de travail du Centre d'Economie de la Sorbonne 10005, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Wayne Tarrant, 2012. "On the Necessity of Five Risk Measures," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00721339, HAL.
- Dominique Guegan & Wayne Tarrant, 2010. "On the necessity of five risk measures," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00460901, HAL.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2025-09-08 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09444. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2507.09444.html