IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.04074.html
   My bibliography  Save this paper

Efficiency through Evolution, A Darwinian Approach to Agent-Based Economic Forecast Modeling

Author

Listed:
  • Martin Jaraiz

Abstract

This paper presents a novel Darwinian Agent-Based Modeling (ABM) methodology formacroeconomic forecasting that leverages evolutionary principles to achieve remarkablecomputational efficiency and emergent realism. Unlike conventional DSGE and ABM approachesthat rely on complex behavioral rules derived from large firm analysis, our framework employssimple "common sense" rules representative of small firms directly serving final consumers. Themethodology treats households as the primary drivers of economic dynamics, with firms adaptingthrough market-based natural selection within limited interaction neighborhoods. We demonstrate that this approach, when constrained by Input-Output table structures,generates realistic economic patterns including wealth distributions, firm size distributions, andsectoral employment patterns without extensive parameter calibration. Using FIGARO Input-Output tables for 46 countries and focusing on Austria as a case study, we show that the modelreproduces empirical regularities while maintaining computational efficiency on standard laptopsrather than requiring supercomputing clusters. Key findings include: (1) emergence of realistic firm and employment distributions fromminimal behavioral assumptions, (2) accurate reproduction of the initial Social Accounting Matrixvalues through evolutionary dynamics, (3) successful calibration using only 5-6 country-specificparameters to complement the FIGARO data, and (4) computational performance enabling fullsimulations on consumer hardware. These results suggest that evolutionary ABM approaches canprovide robust policy insights by capturing decentralized market adaptations while avoiding thecomputational complexity of traditional DSGE and comprehensive ABM models.

Suggested Citation

  • Martin Jaraiz, 2025. "Efficiency through Evolution, A Darwinian Approach to Agent-Based Economic Forecast Modeling," Papers 2507.04074, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.04074
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.04074
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    2. Poledna, Sebastian & Miess, Michael Gregor & Hommes, Cars & Rabitsch, Katrin, 2023. "Economic forecasting with an agent-based model," European Economic Review, Elsevier, vol. 151(C).
    3. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    4. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    2. Rizzati, Massimiliano & Landoni, Matteo, 2024. "A systematic review of agent-based modelling in the circular economy: Insights towards a general model," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 617-631.
    3. Kirill S. Glavatskiy & Mikhail Prokopenko & Adrian Carro & Paul Ormerod & Michael Harré, 2021. "Explaining herding and volatility in the cyclical price dynamics of urban housing markets using a large-scale agent-based model," SN Business & Economics, Springer, vol. 1(6), pages 1-21, June.
    4. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    5. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    6. Pascal Seppecher & Isabelle Salle & Dany Lang, 2019. "Is the market really a good teacher?," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 299-335, March.
    7. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    8. Hazan, Aurélien, 2017. "Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 589-602.
    9. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. de Koning, Koen & Filatova, Tatiana & Bin, Okmyung, 2017. "Bridging the Gap Between Revealed and Stated Preferences in Flood-prone Housing Markets," Ecological Economics, Elsevier, vol. 136(C), pages 1-13.
    11. Giovanni Dosi & Andrea Roventini, 2024. "Evolutionary Growth Theory," LEM Papers Series 2024/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    12. Andreas Klein, 2011. "Die Entwicklung eines agentenbasierten Basismodells zur Bestimmung der deckungsbeitragsmaximierenden Anzahl von Außendienstmitarbeitern," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(2), pages 189-210, January.
    13. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    14. Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Joseph E. Stiglitz & Tania Treibich, 2020. "Rational Heuristics? Expectations And Behaviors In Evolving Economies With Heterogeneous Interacting Agents," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1487-1516, July.
    15. Tamás Sebestyén & Dóra Longauer, 2018. "Network structure, equilibrium and dynamics in a monopolistically competitive economy," Netnomics, Springer, vol. 19(3), pages 131-157, December.
    16. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2018. "Simulation of Stylized Facts in Agent-Based Computational Economic Market Models," Papers 1812.02726, arXiv.org, revised Nov 2019.
    17. Eveline Leeuwen & Mark Lijesen, 2016. "Agents playing Hotelling’s game: an agent-based approach to a game theoretic model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 57(2), pages 393-411, November.
    18. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    19. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    20. Rianne Duinen & Tatiana Filatova & Wander Jager & Anne Veen, 2016. "Going beyond perfect rationality: drought risk, economic choices and the influence of social networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 57(2), pages 335-369, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.04074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.