IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.02011.html
   My bibliography  Save this paper

Machine Learning Based Stress Testing Framework for Indian Financial Market Portfolios

Author

Listed:
  • Vidya Sagar G
  • Shifat Ali
  • Siddhartha P. Chakrabarty

Abstract

This paper presents a machine learning driven framework for sectoral stress testing in the Indian financial market, focusing on financial services, information technology, energy, consumer goods, and pharmaceuticals. Initially, we address the limitations observed in conventional stress testing through dimensionality reduction and latent factor modeling via Principal Component Analysis and Autoencoders. Building on this, we extend the methodology using Variational Autoencoders, which introduces a probabilistic structure to the latent space. This enables Monte Carlo-based scenario generation, allowing for more nuanced, distribution-aware simulation of stressed market conditions. The proposed framework captures complex non-linear dependencies and supports risk estimation through Value-at-Risk and Expected Shortfall. Together, these pipelines demonstrate the potential of Machine Learning approaches to improve the flexibility, robustness, and realism of financial stress testing.

Suggested Citation

  • Vidya Sagar G & Shifat Ali & Siddhartha P. Chakrabarty, 2025. "Machine Learning Based Stress Testing Framework for Indian Financial Market Portfolios," Papers 2507.02011, arXiv.org.
  • Handle: RePEc:arx:papers:2507.02011
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.02011
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Natalie Packham, 2023. "Risk factor aggregation and stress testing," Papers 2310.04511, arXiv.org.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    2. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    3. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    4. Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
    5. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    6. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    7. Gianna Figà-Talamanca & Marco Patacca, 2024. "An explorative analysis of sentiment impact on S&P 500 components returns, volatility and downside risk," Annals of Operations Research, Springer, vol. 342(3), pages 2095-2117, November.
    8. Allen, Linda & Bali, Turan G., 2007. "Cyclicality in catastrophic and operational risk measurements," Journal of Banking & Finance, Elsevier, vol. 31(4), pages 1191-1235, April.
    9. Yuzhi Cai, 2021. "Estimating expected shortfall using a quantile function model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4332-4360, July.
    10. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    11. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    12. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    13. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    14. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    15. Ergün, A. Tolga & Jun, Jongbyung, 2010. "Time-varying higher-order conditional moments and forecasting intraday VaR and Expected Shortfall," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 264-272, August.
    16. Chebbi, Ali & Hedhli, Amel, 2022. "Revisiting the accuracy of standard VaR methods for risk assessment: Using the Copula–EVT multidimensional approach for stock markets in the MENA region," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 430-445.
    17. Feng, Zhen-Hua & Wei, Yi-Ming & Wang, Kai, 2012. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," Applied Energy, Elsevier, vol. 99(C), pages 97-108.
    18. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
    19. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    20. Kellner, Ralf & Rösch, Daniel, 2016. "Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk," Journal of Economic Dynamics and Control, Elsevier, vol. 68(C), pages 45-63.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.02011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.