IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.04511.html
   My bibliography  Save this paper

Risk factor aggregation and stress testing

Author

Listed:
  • Natalie Packham

Abstract

Stress testing refers to the application of adverse financial or macroeconomic scenarios to a portfolio. For this purpose, financial or macroeconomic risk factors are linked with asset returns, typically via a factor model. We expand the range of risk factors by adapting dimension-reduction techniques from unsupervised learning, namely PCA and autoencoders. This results in aggregated risk factors, encompassing a global factor, factors representing broad geographical regions, and factors specific to cyclical and defensive industries. As the adapted PCA and autoencoders provide an interpretation of the latent factors, this methodology is also valuable in other areas where dimension-reduction and explainability are crucial.

Suggested Citation

  • Natalie Packham, 2023. "Risk factor aggregation and stress testing," Papers 2310.04511, arXiv.org.
  • Handle: RePEc:arx:papers:2310.04511
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.04511
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Breyer Caldas & João Frois Caldeira & Guilherme Vale Moura, 2016. "Is Pairs Trading Performance Sensitive To The Methodologies?: A Comparison," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 130, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    2. P. S. Lintilhac & A. Tourin, 2017. "Model-based pairs trading in the bitcoin markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 703-716, May.
    3. Ahmet Göncü & Erdinc Akyildirim, 2017. "Statistical Arbitrage In The Multi-Asset Black–Scholes Economy," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-18, March.
    4. Claudio Barbieri & Mattia Guerini & Mauro Napoletano, 2021. "The anatomy of government bond yields synchronization in the Eurozone," SciencePo Working papers Main hal-03373853, HAL.
    5. Zhengqin Zeng & Chi-Guhn Lee, 2014. "Pairs trading: optimal thresholds and profitability," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1881-1893, November.
    6. Ahmet G�nc�, 2015. "Statistical arbitrage in the Black-Scholes framework," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1489-1499, September.
    7. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    8. Ahmet Göncü & Erdinc Akyildirim, 2016. "A stochastic model for commodity pairs trading," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1843-1857, December.
    9. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors to Improve Covariance Matrix Estimation," Papers 2107.05201, arXiv.org, revised Oct 2021.
    10. Paul Bilokon & David Finkelstein, 2021. "Iterated and exponentially weighted moving principal component analysis," Papers 2108.13072, arXiv.org.
    11. Jorge Guijarro-Ordonez, 2019. "High-dimensional statistical arbitrage with factor models and stochastic control," Papers 1901.09309, arXiv.org, revised Jun 2021.
    12. Ha, Youngmin & Zhang, Hai, 2020. "Algorithmic trading for online portfolio selection under limited market liquidity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1033-1051.
    13. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    14. Anna Ananova & Rama Cont & Renyuan Xu, 2020. "Model-free Analysis of Dynamic Trading Strategies," Papers 2011.02870, arXiv.org, revised Mar 2025.
    15. Pushpendu Ghosh & Ariel Neufeld & Jajati Keshari Sahoo, 2020. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Papers 2004.10178, arXiv.org, revised Jun 2021.
    16. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Isabel Figuerola‐Ferretti & Ioannis Paraskevopoulos & Tao Tang, 2018. "Pairs‐trading and spread persistence in the European stock market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 998-1023, September.
    18. Trent Spears & Stefan Zohren & Stephen Roberts, 2023. "On statistical arbitrage under a conditional factor model of equity returns," Papers 2309.02205, arXiv.org.
    19. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    20. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.04511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.