IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.01167.html
   My bibliography  Save this paper

Uniform Validity of the Subset Anderson-Rubin Test under Heteroskedasticity and Nonlinearity

Author

Listed:
  • Atsushi Inoue
  • `Oscar Jord`a
  • Guido M. Kuersteiner

Abstract

We consider the Anderson-Rubin (AR) statistic for a general set of nonlinear moment restrictions. The statistic is based on the criterion function of the continuous updating estimator (CUE) for a subset of parameters not constrained under the Null. We treat the data distribution nonparametrically with parametric moment restrictions imposed under the Null. We show that subset tests and confidence intervals based on the AR statistic are uniformly valid over a wide range of distributions that include moment restrictions with general forms of heteroskedasticity. We show that the AR based tests have correct asymptotic size when parameters are unidentified, partially identified, weakly or strongly identified. We obtain these results by constructing an upper bound that is using a novel perturbation and regularization approach applied to the first order conditions of the CUE. Our theory applies to both cross-sections and time series data and does not assume stationarity in time series settings or homogeneity in cross-sectional settings.

Suggested Citation

  • Atsushi Inoue & `Oscar Jord`a & Guido M. Kuersteiner, 2025. "Uniform Validity of the Subset Anderson-Rubin Test under Heteroskedasticity and Nonlinearity," Papers 2507.01167, arXiv.org.
  • Handle: RePEc:arx:papers:2507.01167
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.01167
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.01167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.