IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.01167.html
   My bibliography  Save this paper

Uniform Validity of the Subset Anderson-Rubin Test under Heteroskedasticity and Nonlinearity

Author

Listed:
  • Atsushi Inoue
  • `Oscar Jord`a
  • Guido M. Kuersteiner

Abstract

We consider the Anderson-Rubin (AR) statistic for a general set of nonlinear moment restrictions. The statistic is based on the criterion function of the continuous updating estimator (CUE) for a subset of parameters not constrained under the Null. We treat the data distribution nonparametrically with parametric moment restrictions imposed under the Null. We show that subset tests and confidence intervals based on the AR statistic are uniformly valid over a wide range of distributions that include moment restrictions with general forms of heteroskedasticity. We show that the AR based tests have correct asymptotic size when parameters are unidentified, partially identified, weakly or strongly identified. We obtain these results by constructing an upper bound that is using a novel perturbation and regularization approach applied to the first order conditions of the CUE. Our theory applies to both cross-sections and time series data and does not assume stationarity in time series settings or homogeneity in cross-sectional settings.

Suggested Citation

  • Atsushi Inoue & `Oscar Jord`a & Guido M. Kuersteiner, 2025. "Uniform Validity of the Subset Anderson-Rubin Test under Heteroskedasticity and Nonlinearity," Papers 2507.01167, arXiv.org.
  • Handle: RePEc:arx:papers:2507.01167
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.01167
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    2. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    3. Donald W.K. Andrews, 2017. "Identification-Robust Subvector Inference," Cowles Foundation Discussion Papers 2105, Cowles Foundation for Research in Economics, Yale University, revised Sep 2017.
    4. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    2. Yicong Lin & Hanno Reuvers, 2020. "Cointegrating Polynomial Regressions with Power Law Trends: Environmental Kuznets Curve or Omitted Time Effects?," Papers 2009.02262, arXiv.org, revised Dec 2021.
    3. Zhang, Rongmao & Chan, Ngai Hang, 2018. "Portmanteau-type tests for unit-root and cointegration," Journal of Econometrics, Elsevier, vol. 207(2), pages 307-324.
    4. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    5. Gonçalves, Sílvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1367-1384, December.
    6. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    7. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    8. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    9. Guggenberger, Patrik & Kleibergen, Frank & Mavroeidis, Sophocles, 2023. "A test for Kronecker Product Structure covariance matrix," Journal of Econometrics, Elsevier, vol. 233(1), pages 88-112.
    10. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    11. Jules Tinang & Nour Meddahi, 2016. "GMM estimation of the Long Run Risks model," 2016 Meeting Papers 1107, Society for Economic Dynamics.
    12. Kourogenis, Nikolaos & Pittis, Nikitas & Samartzis, Panagiotis, 2024. "Unbounded heteroscedasticity in autoregressive models," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    13. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis, 2021. "A Powerful Subvector Anderson Rubin Test in Linear Instrumental Variables Regression with Conditional Heteroskedasticity," Papers 2103.11371, arXiv.org, revised Oct 2022.
    14. Kourogenis, Nikolaos & Pittis, Nikitas, 2010. "Unbounded heteroscedasticity in first-order autoregressive models and the Eicker-White asymptotic variance estimator," Economics Letters, Elsevier, vol. 106(2), pages 84-86, February.
    15. Yannick Hoga & Christian Schulz, 2025. "Self-Normalized Inference in (Quantile, Expected Shortfall) Regressions for Time Series," Papers 2502.10065, arXiv.org, revised Jun 2025.
    16. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    17. Gregory Cox, 2022. "Weak Identification in Low-Dimensional Factor Models with One or Two Factors," Papers 2211.00329, arXiv.org, revised Mar 2024.
    18. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    19. Forneron, Jean-Jacques, 2024. "Detecting identification failure in moment condition models," Journal of Econometrics, Elsevier, vol. 238(1).
    20. Whang, Yoon-Jae & Andrews, Donald W. K., 1993. "Tests of specification for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 277-318.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.01167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.