IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.00249.html
   My bibliography  Save this paper

Endogenous Network Structures with Precision and Dimension Choices

Author

Listed:
  • Nikhil Kumar

Abstract

This paper presents a social learning model where the network structure is endogenously determined by signal precision and dimension choices. Agents not only choose the precision of their signals and what dimension of the state to learn about, but these decisions directly determine the underlying network structure on which social learning occurs. We show that under a fixed network structure, the optimal precision choice is sublinear in the agent's stationary influence in the network, and this individually optimal choice is worse than the socially optimal choice by a factor of $n^{1/3}$. Under a dynamic network structure, we specify the network by defining a kernel distance between agents, which then determines how much weight agents place on one another. Agents choose dimensions to learn about such that their choice minimizes the squared sum of influences of all agents: a network with equally distributed influence across agents is ideal.

Suggested Citation

  • Nikhil Kumar, 2025. "Endogenous Network Structures with Precision and Dimension Choices," Papers 2507.00249, arXiv.org.
  • Handle: RePEc:arx:papers:2507.00249
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.00249
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, S. Nageeb, 2018. "Herding with costly information," Journal of Economic Theory, Elsevier, vol. 175(C), pages 713-729.
    2. Krishna Dasaratha & Benjamin Golub & Nir Hak, 2023. "Learning from Neighbours about a Changing State," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2326-2369.
    3. Wanying Huang & Philipp Strack & Omer Tamuz, 2024. "Learning in Repeated Interactions on Networks," Econometrica, Econometric Society, vol. 92(1), pages 1-27, January.
    4. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    5. Manuel Mueller-Frank & Mallesh M. Pai, 2016. "Social Learning with Costly Search," American Economic Journal: Microeconomics, American Economic Association, vol. 8(1), pages 83-109, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harry Pei, 2020. "Reputation Building under Observational Learning," Papers 2006.08068, arXiv.org, revised Nov 2020.
    2. Bobkova, Nina & Mass, Helene, 2022. "Two-dimensional information acquisition in social learning," Journal of Economic Theory, Elsevier, vol. 202(C).
    3. Sushil Bikhchandani & David Hirshleifer & Omer Tamuz & Ivo Welch, 2024. "Information Cascades and Social Learning," Journal of Economic Literature, American Economic Association, vol. 62(3), pages 1040-1093, September.
    4. Jacob Glazer & Ilan Kremer & Motty Perry, 2021. "The Wisdom of the Crowd When Acquiring Information Is Costly," Management Science, INFORMS, vol. 67(10), pages 6443-6456, October.
    5. Jan Hązła & Ali Jadbabaie & Elchanan Mossel & M. Amin Rahimian, 2021. "Bayesian Decision Making in Groups is Hard," Operations Research, INFORMS, vol. 69(2), pages 632-654, March.
    6. , & ,, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
    7. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    8. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    9. Kanu, Edmond Augustine & Henning, Christian H. C. A., 2019. "An assessment of land reform policy processes in Sierra Leone: A network based approach," Working Papers of Agricultural Policy WP2019-04, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    10. Crès, Hervé & Tvede, Mich, 2022. "Aggregation of opinions in networks of individuals and collectives," Journal of Economic Theory, Elsevier, vol. 199(C).
    11. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    12. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    13. Mauleon, Ana & Nanumyan, Mariam & Vannetelbosch, Vincent, 2024. "Ideal efforts and consensus in a multi-layer network game," LIDAM Discussion Papers CORE 2024023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Leonardo D'Amico & Guido Tabellini, 2022. "Disengaging from Reality - Online Behavior and Unpleasant Political News," CESifo Working Paper Series 9696, CESifo.
    15. Germano, Fabrizio & Sobbrio, Francesco, 2020. "Opinion dynamics via search engines (and other algorithmic gatekeepers)," Journal of Public Economics, Elsevier, vol. 187(C).
    16. Michel Grabisch & Fen Li, 2020. "Anti-conformism in the Threshold Model of Collective Behavior," Dynamic Games and Applications, Springer, vol. 10(2), pages 444-477, June.
    17. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    18. Aghamolla, Cyrus & Hashimoto, Tadashi, 2020. "Information arrival, delay, and clustering in financial markets with dynamic freeriding," Journal of Financial Economics, Elsevier, vol. 138(1), pages 27-52.
    19. Andrea Galeotti & Benjamin Golub & Sanjeev Goyal & Rithvik Rao, 2021. "Discord and Harmony in Networks," Papers 2102.13309, arXiv.org.
    20. M'ed'eric Motte & Huy^en Pham, 2021. "Optimal bidding strategies for digital advertising," Papers 2111.08311, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.00249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.