IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.14019.html
   My bibliography  Save this paper

Causal Mediation Analysis with Multiple Mediators: A Simulation Approach

Author

Listed:
  • Jesse Zhou
  • Geoffrey T. Wodtke

Abstract

Analyses of causal mediation often involve exposure-induced confounders or, relatedly, multiple mediators. In such applications, researchers aim to estimate a variety of different quantities, including interventional direct and indirect effects, multivariate natural direct and indirect effects, and/or path-specific effects. This study introduces a general approach to estimating all these quantities by simulating potential outcomes from a series of distribution models for each mediator and the outcome. Building on similar methods developed for analyses with only a single mediator (Imai et al. 2010), we first outline how to implement this approach with parametric models. The parametric implementation can accommodate linear and nonlinear relationships, both continuous and discrete mediators, and many different types of outcomes. However, it depends on correct specification of each model used to simulate the potential outcomes. To address the risk of misspecification, we also introduce an alternative implementation using a novel class of nonparametric models, which leverage deep neural networks to approximate the relevant distributions without relying on strict assumptions about functional form. We illustrate both methods by reanalyzing the effects of media framing on attitudes toward immigration (Brader et al. 2008) and the effects of prenatal care on preterm birth (VanderWeele et al. 2014).

Suggested Citation

  • Jesse Zhou & Geoffrey T. Wodtke, 2025. "Causal Mediation Analysis with Multiple Mediators: A Simulation Approach," Papers 2506.14019, arXiv.org.
  • Handle: RePEc:arx:papers:2506.14019
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.14019
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.14019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.