IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.06317.html
   My bibliography  Save this paper

A Sinusoidal Hull-White Model for Interest Rate Dynamics: Capturing Long-Term Periodicity in U.S. Treasury Yields

Author

Listed:
  • Amit Kumar Jha

Abstract

This study is motivated by empirical observations of periodic fluctuations in interest rates, notably long-term economic cycles spanning decades, which the conventional Hull-White short-rate model fails to adequately capture. To address this limitation, we propose an extension that incorporates a sinusoidal, time-varying mean reversion speed, allowing the model to reflect cyclic interest rate dynamics more effectively. The model is calibrated using a comprehensive dataset of daily U.S. Treasury yield curves obtained from the Federal Reserve Economic Data (FRED) database, covering the period from January 1990 to December 2022. The dataset includes tenors of 1, 2, 3, 5, 7, 10, 20, and 30 years, with the most recent yields ranging from 1.22% (1-year) to 2.36% (30-year). Calibration is performed using the Nelder-Mead optimization algorithm, and Monte Carlo simulations with 200 paths and a time step of 0.05 years. The resulting 30-year zero-coupon bond price under the proposed model is 0.43, compared to 0.47 under the standard Hull-White model. This corresponds to root mean squared errors of 0.12% and 0.14%, respectively, indicating a noticeable improvement in fit, particularly for longer maturities. These results highlight the model's enhanced capability to capture long-term yield dynamics and suggest significant implications for bond pricing, interest rate risk management, and the valuation of interest rate derivatives. The findings also open avenues for further research into stochastic periodicity and alternative interest rate modeling frameworks.

Suggested Citation

  • Amit Kumar Jha, 2025. "A Sinusoidal Hull-White Model for Interest Rate Dynamics: Capturing Long-Term Periodicity in U.S. Treasury Yields," Papers 2506.06317, arXiv.org.
  • Handle: RePEc:arx:papers:2506.06317
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.06317
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.06317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.