IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.06317.html
   My bibliography  Save this paper

A Sinusoidal Hull-White Model for Interest Rate Dynamics: Capturing Long-Term Periodicity in U.S. Treasury Yields

Author

Listed:
  • Amit Kumar Jha

Abstract

This study is motivated by empirical observations of periodic fluctuations in interest rates, notably long-term economic cycles spanning decades, which the conventional Hull-White short-rate model fails to adequately capture. To address this limitation, we propose an extension that incorporates a sinusoidal, time-varying mean reversion speed, allowing the model to reflect cyclic interest rate dynamics more effectively. The model is calibrated using a comprehensive dataset of daily U.S. Treasury yield curves obtained from the Federal Reserve Economic Data (FRED) database, covering the period from January 1990 to December 2022. The dataset includes tenors of 1, 2, 3, 5, 7, 10, 20, and 30 years, with the most recent yields ranging from 1.22% (1-year) to 2.36% (30-year). Calibration is performed using the Nelder-Mead optimization algorithm, and Monte Carlo simulations with 200 paths and a time step of 0.05 years. The resulting 30-year zero-coupon bond price under the proposed model is 0.43, compared to 0.47 under the standard Hull-White model. This corresponds to root mean squared errors of 0.12% and 0.14%, respectively, indicating a noticeable improvement in fit, particularly for longer maturities. These results highlight the model's enhanced capability to capture long-term yield dynamics and suggest significant implications for bond pricing, interest rate risk management, and the valuation of interest rate derivatives. The findings also open avenues for further research into stochastic periodicity and alternative interest rate modeling frameworks.

Suggested Citation

  • Amit Kumar Jha, 2025. "A Sinusoidal Hull-White Model for Interest Rate Dynamics: Capturing Long-Term Periodicity in U.S. Treasury Yields," Papers 2506.06317, arXiv.org.
  • Handle: RePEc:arx:papers:2506.06317
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.06317
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    2. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    2. de Jong, Frank, 2000. "Time Series and Cross-Section Information in Affine Term-Structure Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 300-314, July.
    3. Choong Tze Chua & Dean Foster & Krishna Ramaswamy & Robert Stine, 2008. "A Dynamic Model for the Forward Curve," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 265-310, January.
    4. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    5. de Jong, F.C.J.M., 1997. "Time-series and cross section information in affine term structure models," Other publications TiSEM 08704828-0ee7-4069-8a94-2, Tilburg University, School of Economics and Management.
    6. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    7. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    8. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    9. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    10. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. repec:wyi:journl:002108 is not listed on IDEAS
    13. Alain Monfort & Fulvio Pegoraro, 2006. "Multi-Lag Term Structure Models with Stochastic Risk Premia," Working Papers 2006-29, Center for Research in Economics and Statistics.
    14. Zeno Rotondi, 2006. "The Macroeconomy and the Yield Curve: A Review of the Literature with Some New Evidence," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 65(2), pages 193-224, November.
    15. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    16. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    17. Renato França & Raquel M. Gaspar, 2023. "On the Bias of the Unbiased Expectation Theory," Mathematics, MDPI, vol. 12(1), pages 1-20, December.
    18. Markus Leippold & Liuren Wu, 1999. "The Potential Approach to Bond and Currency Pricing," Finance 9903004, University Library of Munich, Germany.
    19. Jan Hanousek & Evžen KoÄ enda & Petr ZemÄ Ã­k, 2008. "Bond Market Emergence," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 7(2), pages 141-168, August.
    20. Zura Kakushadze, 2015. "Coping with Negative Short-Rates," Papers 1502.06074, arXiv.org, revised Aug 2015.
    21. Siem Jan Koopman & Max I.P. Mallee & Michel van der Wel, 2007. "Analyzing the Term Structure of Interest Rates using the Dynamic Nelson-Siegel Model with Time-Varying Parameters," Tinbergen Institute Discussion Papers 07-095/4, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.06317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.