Author
Listed:
- Jesse Thibodeau
- Hadi Nekoei
- Afaf Taik
- Janarthanan Rajendran
- Golnoosh Farnadi
Abstract
Dynamic, risk-based pricing can systematically exclude vulnerable consumer groups from essential resources such as health insurance and consumer credit. We show that a regulator can realign private incentives with social objectives through a learned, interpretable tax schedule. First, we provide a formal proposition that bounding each firm's \emph{local} demographic gap implicitly bounds the \emph{global} opt-out disparity, motivating firm-level penalties. Building on this insight we introduce \texttt{MarketSim} -- an open-source, scalable simulator of heterogeneous consumers and profit-maximizing firms -- and train a reinforcement learning (RL) social planner (SP) that selects a bracketed fairness-tax while remaining close to a simple linear prior via an $\mathcal{L}_1$ regularizer. The learned policy is thus both transparent and easily interpretable. In two empirically calibrated markets, i.e., U.S. health-insurance and consumer-credit, our planner simultaneously raises demand-fairness by up to $16\%$ relative to unregulated Free Market while outperforming a fixed linear schedule in terms of social welfare without explicit coordination. These results illustrate how AI-assisted regulation can convert a competitive social dilemma into a win-win equilibrium, providing a principled and practical framework for fairness-aware market oversight.
Suggested Citation
Jesse Thibodeau & Hadi Nekoei & Afaf Taik & Janarthanan Rajendran & Golnoosh Farnadi, 2025.
"Balancing Profit and Fairness in Risk-Based Pricing Markets,"
Papers
2506.00140, arXiv.org, revised Jun 2025.
Handle:
RePEc:arx:papers:2506.00140
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.00140. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.