IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.20508.html
   My bibliography  Save this paper

Intraday Functional PCA Forecasting of Cryptocurrency Returns

Author

Listed:
  • Joann Jasiak
  • Cheng Zhong

Abstract

We study the Functional PCA (FPCA) forecasting method in application to functions of intraday returns on Bitcoin. We show that improved interval forecasts of future return functions are obtained when the conditional heteroscedasticity of return functions is taken into account. The Karhunen-Loeve (KL) dynamic factor model is introduced to bridge the functional and discrete time dynamic models. It offers a convenient framework for functional time series analysis. For intraday forecasting, we introduce a new algorithm based on the FPCA applied by rolling, which can be used for any data observed continuously 24/7. The proposed FPCA forecasting methods are applied to return functions computed from data sampled hourly and at 15-minute intervals. Next, the functional forecasts evaluated at discrete points in time are compared with the forecasts based on other methods, including machine learning and a traditional ARMA model. The proposed FPCA-based methods perform well in terms of forecast accuracy and outperform competitors in terms of directional (sign) of return forecasts at fixed points in time.

Suggested Citation

  • Joann Jasiak & Cheng Zhong, 2025. "Intraday Functional PCA Forecasting of Cryptocurrency Returns," Papers 2505.20508, arXiv.org.
  • Handle: RePEc:arx:papers:2505.20508
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.20508
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    3. Alexander Aue & Lajos Horváth & Daniel F. Pellatt, 2017. "Functional Generalized Autoregressive Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 3-21, January.
    4. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    5. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    6. Han Lin Shang, 2020. "Dynamic principal component regression for forecasting functional time series in a group structure," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(4), pages 307-322, April.
    7. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    8. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    9. Jasiak, Joann & Zhong, Cheng, 2024. "Intraday and daily dynamics of cryptocurrency," International Review of Economics & Finance, Elsevier, vol. 96(PB).
    10. Piotr Kokoszka & Hong Miao & Xi Zhang, 2015. "Functional Dynamic Factor Model for Intraday Price Curves," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 456-477.
    11. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    12. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    13. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    2. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    3. Zouheir Mighri & Majid Ibrahim Alsaggaf, 2019. "Volatility Spillovers among the Cryptocurrency Time Series," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 81-90.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Oh, Dong Hwan & Patton, Andrew J., 2016. "High-dimensional copula-based distributions with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
    6. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    7. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    8. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    9. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    10. Chang, C-L. & McAleer, M.J. & Wang, Y-A., 2018. "Latent Volatility Granger Causality and Spillovers in Renewable Energy and Crude Oil ETFs," Econometric Institute Research Papers TI 2018-052/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Miguel A. Ferreira, 2005. "Evaluating Interest Rate Covariance Models Within a Value-at-Risk Framework," Journal of Financial Econometrics, Oxford University Press, vol. 3(1), pages 126-168.
    12. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    14. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    15. Chulwoo Han & Frank C. Park & Jangkoo Kang, 2017. "A geometric treatment of time-varying volatilities," Review of Quantitative Finance and Accounting, Springer, vol. 49(4), pages 1121-1141, November.
    16. Abdul Hakim & Michael McAleer, 2009. "VaR Forecasts and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds," CIRJE F-Series CIRJE-F-676, CIRJE, Faculty of Economics, University of Tokyo.
    17. Hakim, Abdul & McAleer, Michael, 2009. "Forecasting conditional correlations in stock, bond and foreign exchange markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2830-2846.
    18. Akhtaruzzaman, Md & Shamsuddin, Abul & Easton, Steve, 2014. "Dynamic correlation analysis of spill-over effects of interest rate risk and return on Australian and US financial firms," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 378-396.
    19. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    20. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.20508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.