IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.15296.html
   My bibliography  Save this paper

Agent-based Liquidity Risk Modelling for Financial Markets

Author

Listed:
  • Perukrishnen Vytelingum
  • Rory Baggott
  • Namid Stillman
  • Jianfei Zhang
  • Dingqiu Zhu
  • Tao Chen
  • Justin Lyon

Abstract

In this paper, we describe a novel agent-based approach for modelling the transaction cost of buying or selling an asset in financial markets, e.g., to liquidate a large position as a result of a margin call to meet financial obligations. The simple act of buying or selling in the market causes a price impact and there is a cost described as liquidity risk. For example, when selling a large order, there is market slippage -- each successive trade will execute at the same or worse price. When the market adjusts to the new information revealed by the execution of such a large order, we observe in the data a permanent price impact that can be attributed to the change in the fundamental value as market participants reassess the value of the asset. In our ABM model, we introduce a novel mechanism where traders assume orderflow is informed and each trade reveals some information about the value of the asset, and traders update their belief of the fundamental value for every trade. The result is emergent, realistic price impact without oversimplifying the problem as most stylised models do, but within a realistic framework that models the exchange with its protocols, its limit orderbook and its auction mechanism and that can calculate the transaction cost of any execution strategy without limitation. Our stochastic ABM model calculates the costs and uncertainties of buying and selling in a market by running Monte-Carlo simulations, for a better understanding of liquidity risk and can be used to optimise for optimal execution under liquidity risk. We demonstrate its practical application in the real world by calculating the liquidity risk for the Hang-Seng Futures Index.

Suggested Citation

  • Perukrishnen Vytelingum & Rory Baggott & Namid Stillman & Jianfei Zhang & Dingqiu Zhu & Tao Chen & Justin Lyon, 2025. "Agent-based Liquidity Risk Modelling for Financial Markets," Papers 2505.15296, arXiv.org.
  • Handle: RePEc:arx:papers:2505.15296
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.15296
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Majewski, Adam A. & Ciliberti, Stefano & Bouchaud, Jean-Philippe, 2020. "Co-existence of trend and value in financial markets: Estimating an extended Chiarella model," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    3. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    4. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    5. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    6. Jean-Philippe Bouchaud, 2021. "The Inelastic Market Hypothesis: A Microstructural Interpretation," Papers 2108.00242, arXiv.org, revised Jan 2022.
    7. Richard Bookstaber & Mark Paddrik & Brian Tivnan, 2018. "An agent-based model for financial vulnerability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 433-466, July.
    8. Tucker Hybinette Balch & Mahmoud Mahfouz & Joshua Lockhart & Maria Hybinette & David Byrd, 2019. "How to Evaluate Trading Strategies: Single Agent Market Replay or Multiple Agent Interactive Simulation?," Papers 1906.12010, arXiv.org.
    9. Emmanuel Bacry & Adrian Iuga & Matthieu Lasnier & Charles-Albert Lehalle, 2014. "Market impacts and the life cycle of investors orders," Papers 1412.0217, arXiv.org, revised Dec 2014.
    10. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    11. Kang Gao & Perukrishnen Vytelingum & Stephen Weston & Wayne Luk & Ce Guo, 2022. "Understanding intra-day price formation process by agent-based financial market simulation: calibrating the extended chiarella model," Papers 2208.14207, arXiv.org.
    12. Jean-Philippe Bouchaud, 2022. "The inelastic market hypothesis: a microstructural interpretation," Quantitative Finance, Taylor & Francis Journals, vol. 22(10), pages 1785-1795, October.
    13. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    14. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    15. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    16. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    17. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    18. Potters, Marc & Bouchaud, Jean-Philippe, 2003. "More statistical properties of order books and price impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 133-140.
    19. Frank McGroarty & Ash Booth & Enrico Gerding & V. L. Raju Chinthalapati, 2019. "High frequency trading strategies, market fragility and price spikes: an agent based model perspective," Annals of Operations Research, Springer, vol. 282(1), pages 217-244, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    2. Colin M. Van Oort & Ethan Ratliff-Crain & Brian F. Tivnan & Safwan Wshah, 2023. "Adaptive Agents and Data Quality in Agent-Based Financial Markets," Papers 2311.15974, arXiv.org.
    3. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    4. Daniel Fricke & Thomas Lux, 2015. "The effects of a financial transaction tax in an artificial financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 119-150, April.
    5. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    6. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    7. Haochen Li & Yi Cao & Maria Polukarov & Carmine Ventre, 2023. "An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics," Papers 2308.14235, arXiv.org, revised Jun 2024.
    8. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    9. Kyubin Yim & Gabjin Oh & Seunghwan Kim, 2016. "Understanding Financial Market States Using an Artificial Double Auction Market," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    10. Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
    11. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    12. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    13. Gu, Gao-Feng & Ren, Fei & Ni, Xiao-Hui & Chen, Wei & Zhou, Wei-Xing, 2010. "Empirical regularities of opening call auction in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 278-286.
    14. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    15. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    16. Christopher J. Cho & Timothy J. Norman & Manuel Nunes, 2023. "PRIME: A Price-Reverting Impact Model of a cryptocurrency Exchange," Papers 2305.07559, arXiv.org.
    17. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    18. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.
    19. Kang Gao & Perukrishnen Vytelingum & Stephen Weston & Wayne Luk & Ce Guo, 2022. "Understanding intra-day price formation process by agent-based financial market simulation: calibrating the extended chiarella model," Papers 2208.14207, arXiv.org.
    20. Noemi Schmitt & Ivonne Schwartz & Frank Westerhoff, 2022. "Heterogeneous speculators and stock market dynamics: a simple agent-based computational model," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1263-1282, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.15296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.