IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.05113.html
   My bibliography  Save this paper

Loss-Versus-Rebalancing under Deterministic and Generalized block-times

Author

Listed:
  • Alex Nezlobin
  • Martin Tassy

Abstract

Although modern blockchains almost universally produce blocks at fixed intervals, existing models still lack an analytical formula for the loss-versus-rebalancing (LVR) incurred by Automated Market Makers (AMMs) liquidity providers in this setting. Leveraging tools from random walk theory, we derive the following closed-form approximation for the per block per unit of liquidity expected LVR under constant block time: \[ \overline{\mathrm{ARB}}= \frac{\,\sigma_b^{2}} {\,2+\sqrt{2\pi}\,\gamma/(|\zeta(1/2)|\,\sigma_b)\,}+O\!\bigl(e^{-\mathrm{const}\tfrac{\gamma}{\sigma_b}}\bigr)\;\approx\; \frac{\sigma_b^{2}}{\,2 + 1.7164\,\gamma/\sigma_b}, \] where $\sigma_b$ is the intra-block asset volatility, $\gamma$ the AMM spread and $\zeta$ the Riemann Zeta function. Our large Monte Carlo simulations show that this formula is in fact quasi-exact across practical parameter ranges. Extending our analysis to arbitrary block-time distributions as well, we demonstrate both that--under every admissible inter-block law--the probability that a block carries an arbitrage trade converges to a universal limit, and that only constant block spacing attains the asymptotically minimal LVR. This shows that constant block intervals provide the best possible protection against arbitrage for liquidity providers.

Suggested Citation

  • Alex Nezlobin & Martin Tassy, 2025. "Loss-Versus-Rebalancing under Deterministic and Generalized block-times," Papers 2505.05113, arXiv.org, revised May 2025.
  • Handle: RePEc:arx:papers:2505.05113
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.05113
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robin Hanson, 2007. "Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation," Journal of Prediction Markets, University of Buckingham Press, vol. 1(1), pages 3-15, February.
    2. Khaniyev, Tahir & Kucuk, Zafer, 2004. "Asymptotic expansions for the moments of the Gaussian random walk with two barriers," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 91-103, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    2. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    3. Khaniyev, T. & Kesemen, T. & Aliyev, R. & Kokangul, A., 2008. "Asymptotic expansions for the moments of a semi-Markovian random walk with exponential distributed interference of chance," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 785-793, April.
    4. Spyros Galanis & Christos A Ioannou & Stelios Kotronis, 2024. "Information Aggregation Under Ambiguity: Theory and Experimental Evidence," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(6), pages 3423-3467.
    5. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    6. Galanis Spyros & Kotronis Stelios, 2021. "Updating Awareness and Information Aggregation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 21(2), pages 613-635, June.
    7. Patrick Buckley & Fergal O’Brien, 0. "The effect of malicious manipulations on prediction market accuracy," Information Systems Frontiers, Springer, vol. 0, pages 1-13.
    8. Dian Yu & Jianjun Gao & Weiping Wu & Zizhuo Wang, 2022. "Price Interpretability of Prediction Markets: A Convergence Analysis," Papers 2205.08913, arXiv.org, revised Nov 2023.
    9. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    10. Ledyard, John & Hanson, Robin & Ishikida, Takashi, 2009. "An experimental test of combinatorial information markets," Journal of Economic Behavior & Organization, Elsevier, vol. 69(2), pages 182-189, February.
    11. Snowberg, Erik & Wolfers, Justin & Zitzewitz, Eric, 2013. "Prediction Markets for Economic Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 657-687, Elsevier.
    12. Felix Holzmeister & Magnus Johannesson & Colin F. Camerer & Yiling Chen & Teck-Hua Ho & Suzanne Hoogeveen & Juergen Huber & Noriko Imai & Taisuke Imai & Lawrence Jin & Michael Kirchler & Alexander Ly , 2025. "Examining the replicability of online experiments selected by a decision market," Nature Human Behaviour, Nature, vol. 9(2), pages 316-330, February.
    13. Ravi Kashyap, 2024. "The Democratization of Wealth Management: Hedged Mutual Fund Blockchain Protocol," Papers 2405.02302, arXiv.org, revised Jul 2024.
    14. Kelly, David L. & Letson, David & Nelson, Forrest & Nolan, David S. & Solís, Daniel, 2012. "Evolution of subjective hurricane risk perceptions: A Bayesian approach," Journal of Economic Behavior & Organization, Elsevier, vol. 81(2), pages 644-663.
    15. Frank M. A. Klingert & Matthias Meyer, 2012. "Effectively combining experimental economics and multi-agent simulation: suggestions for a procedural integration with an example from prediction markets research," Computational and Mathematical Organization Theory, Springer, vol. 18(1), pages 63-90, March.
    16. Ravi Kashyap, 2024. "To Trade Or Not To Trade: Cascading Waterfall Round Robin Rebalancing Mechanism for Cryptocurrencies," Papers 2407.12150, arXiv.org.
    17. Jinli Hu, 2012. "Combinatorial Modelling and Learning with Prediction Markets," Papers 1201.3851, arXiv.org.
    18. Buckley, Patrick, 2016. "Harnessing the wisdom of crowds: Decision spaces for prediction markets," Business Horizons, Elsevier, vol. 59(1), pages 85-94.
    19. Pivato, Marcus & Soh, Arnold, 2020. "Weighted representative democracy," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 52-63.
    20. Nicolas Della Penna & Mark D. Reid, 2011. "Bandit Market Makers," Papers 1112.0076, arXiv.org, revised Aug 2013.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.05113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.