IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.19841.html
   My bibliography  Save this paper

Inference with few treated units

Author

Listed:
  • Luis Alvarez
  • Bruno Ferman
  • Kaspar Wuthrich

Abstract

In many causal inference applications, only one or a few units (or clusters of units) are treated. An important challenge in such settings is that standard inference methods that rely on asymptotic theory may be unreliable, even when the total number of units is large. This survey reviews and categorizes inference methods that are designed to accommodate few treated units, considering both cross-sectional and panel data methods. We discuss trade-offs and connections between different approaches. In doing so, we propose slight modifications to improve the finite-sample validity of some methods, and we also provide theoretical justifications for existing heuristic approaches that have been proposed in the literature.

Suggested Citation

  • Luis Alvarez & Bruno Ferman & Kaspar Wuthrich, 2025. "Inference with few treated units," Papers 2504.19841, arXiv.org.
  • Handle: RePEc:arx:papers:2504.19841
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.19841
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azeem M. Shaikh & Panos Toulis, 2021. "Randomization Tests in Observational Studies With Staggered Adoption of Treatment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1835-1848, October.
    2. Timothy G. Conley & Christopher R. Taber, 2011. "Inference with "Difference in Differences" with a Small Number of Policy Changes," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
    3. Marinho Bertanha & Eunyi Chung, 2023. "Permutation Tests at Nonparametric Rates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2833-2846, October.
    4. Bruno Ferman, 2021. "On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1764-1772, October.
    5. Luis Alvarez & Bruno Ferman, 2023. "Extensions for Inference in Difference-in-Differences with Few Treated Clusters," Papers 2302.03131, arXiv.org.
    6. Kirill Borusyak & Peter Hull, 2023. "Nonrandom Exposure to Exogenous Shocks," Econometrica, Econometric Society, vol. 91(6), pages 2155-2185, November.
    7. Cai Yong & Canay Ivan A. & Kim Deborah & Shaikh Azeem M., 2023. "On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 85-103, January.
    8. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    9. Burt S. Barnow & Matias D. Cattaneo & Rocío Titiunik & Gonzalo Vazquez‐Bare, 2017. "Comparing Inference Approaches for RD Designs: A Reexamination of the Effect of Head Start on Child Mortality," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 36(3), pages 643-681, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org, revised Feb 2025.
    2. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    3. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    4. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    5. Heckman, James & Pinto, Rodrigo & Shaikh, Azeem M., 2024. "Dealing with imperfect randomization: Inference for the highscope perry preschool program," Journal of Econometrics, Elsevier, vol. 243(1).
    6. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    7. Guido W. Imbens & Davide Viviano, 2023. "Identification and Inference for Synthetic Controls with Confounding," Papers 2312.00955, arXiv.org.
    8. Zongwu Cai & Ying Fang & Ming Lin & Zixuan Wu, 2023. "A Quasi Synthetic Control Method for Nonlinear Models With High-Dimensional Covariates," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202305, University of Kansas, Department of Economics, revised Aug 2023.
    9. Marina Dias & Demian Pouzo, 2021. "Inference for multi-valued heterogeneous treatment effects when the number of treated units is small," Papers 2105.10965, arXiv.org.
    10. Christopher Erwin, 2019. "Low-performing student responses to state merit scholarships," Working Papers 2019-02, Auckland University of Technology, Department of Economics.
    11. Luis Alvarez & Bruno Ferman, 2023. "Extensions for Inference in Difference-in-Differences with Few Treated Clusters," Papers 2302.03131, arXiv.org.
    12. Seunghoon Han & Hosung Sohn, 2020. "Impact of the Simultaneous Use of the Stigmatization and Categorical School Funding Policy on the Test and Post-Secondary Outcomes of Lower-Achieving Students," Korean Economic Review, Korean Economic Association, vol. 36, pages 319-352.
    13. Rhys Bidder & Ian Dew-Becker, 2016. "Long-Run Risk Is the Worst-Case Scenario," American Economic Review, American Economic Association, vol. 106(9), pages 2494-2527, September.
    14. Yao Luo & Peijun Sang & Ruli Xiao, 2024. "Order Statistics Approaches to Unobserved Heterogeneity in Auctions," Working Papers tecipa-776, University of Toronto, Department of Economics.
    15. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    16. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    18. Peñaranda, Francisco & Sentana, Enrique, 2016. "Duality in mean-variance frontiers with conditioning information," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 762-785.
    19. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    20. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2025. "Design-based identification with formula instruments: a review," The Econometrics Journal, Royal Economic Society, vol. 28(1), pages 83-108.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.19841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.