IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.01944.html
   My bibliography  Save this paper

Graphon games and an idealized limit of large network games

Author

Listed:
  • Motoki Otsuka

Abstract

Graphon games are a class of games with a continuum of agents, introduced to approximate the strategic interactions in large network games. The first result of this study is an equilibrium existence theorem in graphon games, under the same conditions as those in network games. We prove the existence of an equilibrium in a graphon game with an infinite-dimensional strategy space, under the continuity and quasi-concavity of the utility functions. The second result characterizes Nash equilibria in graphon games as the limit points of asymptotic Nash equilibria in large network games. If a sequence of large network games converges to a graphon game, any convergent sequence of asymptotic Nash equilibria in these large network games also converges to a Nash equilibrium of the graphon game. In addition, for any graphon game and its equilibrium, there exists a sequence of large network games that converges to the graphon game and has asymptotic Nash equilibria converging to the equilibrium. These results suggest that the concept of a graphon game is an idealized limit of large network games as the number of players tends to infinity.

Suggested Citation

  • Motoki Otsuka, 2025. "Graphon games and an idealized limit of large network games," Papers 2504.01944, arXiv.org.
  • Handle: RePEc:arx:papers:2504.01944
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.01944
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
    2. Francesca Parise & Asuman Ozdaglar, 2023. "Graphon Games: A Statistical Framework for Network Games and Interventions," Econometrica, Econometric Society, vol. 91(1), pages 191-225, January.
    3. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    4. Qiao, Lei & Yu, Haomiao, 2014. "On the space of players in idealized limit games," Journal of Economic Theory, Elsevier, vol. 153(C), pages 177-190.
    5. Khan, M. Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2013. "Large distributional games with traits," Economics Letters, Elsevier, vol. 118(3), pages 502-505.
    6. Xiang Sun & Yongchao Zhang, 2015. "Pure-strategy Nash equilibria in nonatomic games with infinite-dimensional action spaces," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 161-182, January.
    7. Guilherme Carmona & Konrad Podczeck, 2022. "Approximation and characterization of Nash equilibria of large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 679-694, April.
    8. Carmona, Guilherme & Podczeck, Konrad, 2021. "Strict pure strategy Nash equilibria in large finite-player games," Theoretical Economics, Econometric Society, vol. 16(3), July.
    9. Wu, Bin, 2022. "On pure-strategy Nash equilibria in large games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 305-315.
    10. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    11. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    12. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. David Housman, 1988. "Infinite Player Noncooperative Games and the Continuity of the Nash Equilibrium Correspondence," Mathematics of Operations Research, INFORMS, vol. 13(3), pages 488-496, August.
    14. He, Wei & Sun, Xiang & Sun, Yeneng, 2017. "Modeling infinitely many agents," Theoretical Economics, Econometric Society, vol. 12(2), May.
    15. He, Wei & Sun, Yeneng, 2022. "Conditional expectation of Banach valued correspondences and economic applications," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bin, 2022. "On pure-strategy Nash equilibria in large games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 305-315.
    2. Enxian Chen Bin Wu Hanping Xu, 2024. "The equilibrium properties of obvious strategy profiles in games with many players," Papers 2410.22144, arXiv.org.
    3. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    4. Jian Yang, 2023. "Nonatomic game with general preferences over returns," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 861-889, September.
    5. Guilherme Carmona & Konrad Podczeck, 2025. "Large incomplete-information games with independent types," International Journal of Game Theory, Springer;Game Theory Society, vol. 54(1), pages 1-17, June.
    6. He, Wei & Sun, Yeneng, 2022. "Conditional expectation of Banach valued correspondences and economic applications," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    7. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    8. Jian Yang, 2017. "A link between sequential semi-anonymous nonatomic games and their large finite counterparts," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 383-433, May.
    9. Guilherme Carmona & Konrad Podczeck, 2022. "Approximation and characterization of Nash equilibria of large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 679-694, April.
    10. Fu, Haifeng & Wu, Bin, 2019. "Characterization of Nash equilibria of large games," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 46-51.
    11. Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
    12. Bhattacharya, Mihir & Mukherjee, Saptarshi & Sonal, Ruhi & Venkatesh, Raghul S., 2024. "(Large) finite to continuum: An approximation result for electoral competition models," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    13. Balbus, Lukasz & Dziewulski, Pawel & Reffett, Kevin & Wozny, Lukasz, 2022. "Markov distributional equilibrium dynamics in games with complementarities and no aggregate risk," Theoretical Economics, Econometric Society, vol. 17(2), May.
    14. Sun, Xiang & Sun, Yeneng & Yu, Haomiao, 2020. "The individualistic foundation of equilibrium distribution," Journal of Economic Theory, Elsevier, vol. 189(C).
    15. Chen, Enxian & Qiao, Lei & Sun, Xiang & Sun, Yeneng, 2022. "Robust perfect equilibrium in large games," Journal of Economic Theory, Elsevier, vol. 201(C).
    16. Fang, Chuyi & Wu, Bin, 2019. "Socially-maximal Nash equilibrium distributions in large distributional games," Economics Letters, Elsevier, vol. 175(C), pages 40-42.
    17. Khan, Mohammed Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2017. "On the equivalence of large individualized and distributionalized games," Theoretical Economics, Econometric Society, vol. 12(2), May.
    18. Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
    19. M. Ali Khan & Yongchao Zhang, 2017. "Existence of pure-strategy equilibria in Bayesian games: a sharpened necessity result," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 167-183, March.
    20. He, Wei & Sun, Xiang & Sun, Yeneng, 2017. "Modeling infinitely many agents," Theoretical Economics, Econometric Society, vol. 12(2), May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.01944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.