IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.14997.html
   My bibliography  Save this paper

The fundamental representation of pricing adjustments

Author

Listed:
  • Benedict Burnett
  • Ryan McCrickerd
  • Benjamin Piau

Abstract

This article consolidates and extends past work on derivative pricing adjustments, including XVA, by providing an encapsulating representation of the adjustment between any two derivative pricing functions, within an Ito SDE/parabolic PDE framework. We give examples of this representation encapsulating others from the past 20 years, ranging from a well known option pricing adjustment introduced by Gatheral, to the collection of semi-replication XVA originating from Burgard & Kjaer. To highlight extensions, we discuss certain meta-adjustments beyond XVA, designed to help signal and mitigate XVA model risk.

Suggested Citation

  • Benedict Burnett & Ryan McCrickerd & Benjamin Piau, 2025. "The fundamental representation of pricing adjustments," Papers 2503.14997, arXiv.org.
  • Handle: RePEc:arx:papers:2503.14997
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.14997
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Green & Chris Kenyon, 2014. "KVA: Capital Valuation Adjustment," Papers 1405.0515, arXiv.org, revised Oct 2014.
    2. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2020. "Robust XVA," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 738-781, July.
    2. Matteo Bissiri & Riccardo Cogo, 2017. "Behavioral Value Adjustments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-37, December.
    3. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    4. Chris Kenyon & Andrew Green & Mourad Berrahoui, 2015. "Which measure for PFE? The Risk Appetite Measure, A," Papers 1512.06247, arXiv.org.
    5. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    6. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    9. Simona Sanfelici, 2007. "Calibration of a nonlinear feedback option pricing model," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 95-110.
    10. Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
    11. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    12. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    13. Thierry Roncalli, 2018. "Keep up the momentum," Journal of Asset Management, Palgrave Macmillan, vol. 19(5), pages 351-361, September.
    14. Gatfaoui Hayette, 2004. "Idiosyncratic Risk, Systematic Risk and Stochastic Volatility: An Implementation of Merton’s Credit Risk Valuation," Finance 0404004, University Library of Munich, Germany.
    15. Philippe Bertrand & Jean-Luc Prigent, 2015. "On Path-Dependent Structured Funds: Complexity Does Not Always Pay (Asian versus Average Performance Funds)," Finance, Presses universitaires de Grenoble, vol. 36(2), pages 67-105.
    16. Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
    17. Dan Pirjol & Lingjiong Zhu, 2023. "Sensitivities of Asian options in the Black-Scholes model," Papers 2301.06460, arXiv.org.
    18. M. E. Mancino & S. Ogawa & S. Sanfelici, 2004. "A numerical study of the smile effect in implied volatilities induced by a nonlinear feedback model," Economics Department Working Papers 2004-ME01, Department of Economics, Parma University (Italy).
    19. Wujiang Lou, 2016. "Gap Risk KVA and Repo Pricing: An Economic Capital Approach in the Black-Scholes-Merton Framework," Papers 1604.05406, arXiv.org, revised Oct 2016.
    20. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.14997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.