IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.14829.html
   My bibliography  Save this paper

Stochastic Volatility Model with Sticky Drawdown and Drawup Processes: A Deep Learning Approach

Author

Listed:
  • Yuhao Liu
  • Pingping Jiang
  • Gongqiu Zhang

Abstract

We propose a new financial model, the stochastic volatility model with sticky drawdown and drawup processes (SVSDU model), which enables us to capture the features of winning and losing streaks that are common across financial markets but can not be captured simultaneously by the existing financial models. Moreover, the SVSDU model retains the advantages of the stochastic volatility models. Since there are not closed-form option pricing formulas under the SVSDU model and the existing simulation methods for the sticky diffusion processes are really time-consuming, we develop a deep neural network to solve the corresponding high-dimensional parametric partial differential equation (PDE), where the solution to the PDE is the pricing function of a European option according to the Feynman-Kac Theorem, and validate the accuracy and efficiency of our deep learning approach. We also propose a novel calibration framework for our model, and demonstrate the calibration performances of our models on both simulated data and historical data. The calibration results on SPX option data show that the SVSDU model is a good representation of the asset value dynamic, and both winning and losing streaks are accounted for in option values. Our model opens new horizons for modeling and predicting the dynamics of asset prices in financial markets.

Suggested Citation

  • Yuhao Liu & Pingping Jiang & Gongqiu Zhang, 2025. "Stochastic Volatility Model with Sticky Drawdown and Drawup Processes: A Deep Learning Approach," Papers 2503.14829, arXiv.org.
  • Handle: RePEc:arx:papers:2503.14829
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.14829
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    2. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    3. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    4. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    5. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gero Junike & Hauke Stier, 2024. "Enhancing Fourier pricing with machine learning," Papers 2412.05070, arXiv.org.
    2. Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    3. Kathrin Glau & Linus Wunderlich, 2024. "Neural network expression rates and applications of the deep parametric PDE method in counterparty credit risk," Annals of Operations Research, Springer, vol. 336(1), pages 331-357, May.
    4. Hyeong-Ohk Bae & Seunggu Kang & Muhyun Lee, 2024. "Option Pricing and Local Volatility Surface by Physics-Informed Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 3143-3159, November.
    5. Antonis Papapantoleon & Jasper Rou, 2024. "A time-stepping deep gradient flow method for option pricing in (rough) diffusion models," Papers 2403.00746, arXiv.org, revised Apr 2025.
    6. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
    7. Donatien Hainaut & Alex Casas, 2024. "Option pricing in the Heston model with physics inspired neural networks," Annals of Finance, Springer, vol. 20(3), pages 353-376, September.
    8. Dupret, Jean-Loup & Hainaut, Donatien, 2024. "Deep learning for high-dimensional continuous-time stochastic optimal control without explicit solution," LIDAM Discussion Papers ISBA 2024016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Hainaut, Donatien & Casas, Alex, 2024. "Option pricing in the Heston model with Physics inspired neural networks," LIDAM Discussion Papers ISBA 2024002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    11. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    12. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    13. Suleyman Basak & Georgy Chabakauri, 2012. "Dynamic Hedging in Incomplete Markets: A Simple Solution," The Review of Financial Studies, Society for Financial Studies, vol. 25(6), pages 1845-1896.
    14. Kristina O. F. Williams & Benjamin F. Akers, 2023. "Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
    15. Hauser, Shmuel & Kedar-Levy, Haim & Milo, Orit, 2022. "Price discovery during parallel stocks and options preopening: Information distortion and hints of manipulation," Journal of Financial Markets, Elsevier, vol. 59(PA).
    16. Fenglong Guo, 2025. "Pricing Vulnerable Options With Variance Gamma Systematic and Idiosyncratic Factors by Laplace Transform Inversion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 47-76, January.
    17. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    18. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    19. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    20. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.14829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.