IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.06454.html
   My bibliography  Save this paper

Bayesian Synthetic Control with a Soft Simplex Constraint

Author

Listed:
  • Yihong Xu
  • Quan Zhou

Abstract

Whether the synthetic control method should be implemented with the simplex constraint and how to implement it in a high-dimensional setting have been widely discussed. To address both issues simultaneously, we propose a novel Bayesian synthetic control method that integrates a soft simplex constraint with spike-and-slab variable selection. Our model is featured by a hierarchical prior capturing how well the data aligns with the simplex assumption, which enables our method to efficiently adapt to the structure and information contained in the data by utilizing the constraint in a more flexible and data-driven manner. A unique computational challenge posed by our model is that conventional Markov chain Monte Carlo sampling algorithms for Bayesian variable selection are no longer applicable, since the soft simplex constraint results in an intractable marginal likelihood. To tackle this challenge, we propose to update the regression coefficients of two predictors simultaneously from their full conditional posterior distribution, which has an explicit but highly complicated characterization. This novel Gibbs updating scheme leads to an efficient Metropolis-within-Gibbs sampler that enables effective posterior sampling from our model and accurate estimation of the average treatment effect. Simulation studies demonstrate that our method performs well across a wide range of settings, in terms of both variable selection and treatment effect estimation, even when the true data-generating process does not adhere to the simplex constraint. Finally, application of our method to two empirical examples in the economic literature yields interesting insights into the impact of economic policies.

Suggested Citation

  • Yihong Xu & Quan Zhou, 2025. "Bayesian Synthetic Control with a Soft Simplex Constraint," Papers 2503.06454, arXiv.org.
  • Handle: RePEc:arx:papers:2503.06454
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.06454
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
    2. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2011. "Synth: An R Package for Synthetic Control Methods in Comparative Case Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i13).
    3. Firpo Sergio & Possebom Vitor, 2018. "Synthetic Control Method: Inference, Sensitivity Analysis and Confidence Sets," Journal of Causal Inference, De Gruyter, vol. 6(2), pages 1-26, September.
    4. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    5. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    6. Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
    7. Gyuhyeong Goh & Jisang Yu, 2022. "Synthetic control method with convex hull restrictions: a Bayesian maximum a posteriori approach [Using synthetic controls: Feasibility, data requirements, and methodological aspects]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 215-232.
    8. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    9. Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
    10. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    11. Choi, Nam Hee & Li, William & Zhu, Ji, 2010. "Variable Selection With the Strong Heredity Constraint and Its Oracle Property," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 354-364.
    12. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    13. Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    2. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
    4. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    5. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    6. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    7. Giovanni Peri & Derek Rury & Justin C. Wiltshire, 2024. "The Economic Impact of Migrants from Hurricane Maria," Journal of Human Resources, University of Wisconsin Press, vol. 59(6), pages 1795-1829.
    8. Nadine McCloud, 2022. "Does domestic investment respond to inflation targeting? A synthetic control investigation," International Economics, CEPII research center, issue 169, pages 98-134.
    9. Justin Wiltshire, 2021. "allsynth: Synthetic control bias-corrections utilities for Stata," 2021 Stata Conference 15, Stata Users Group.
    10. Luya Wang & Jeffrey S. Racine & Qiaoyu Wang, 2025. "Bootstrap inference on a factor model based average treatment effects estimator," Econometric Reviews, Taylor & Francis Journals, vol. 44(1), pages 80-89, January.
    11. Ignacio Martinez & Jaume Vives-i-Bastida, 2022. "Bayesian and Frequentist Inference for Synthetic Controls," Papers 2206.01779, arXiv.org, revised Jul 2024.
    12. Alberto Abadie & Jinglong Zhao, 2021. "Synthetic Controls for Experimental Design," Papers 2108.02196, arXiv.org, revised Apr 2025.
    13. Justin C. Wiltshire, 2023. "Walmart Supercenters and Monopsony Power: How A Large, Low-Wage Employer Impacts Local Labor Markets," Department Discussion Papers 2304, Department of Economics, University of Victoria.
    14. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    15. Alberto Abadie & Jaume Vives-i-Bastida, 2022. "Synthetic Controls in Action," Papers 2203.06279, arXiv.org.
    16. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    17. Fry, Joseph, 2024. "A method of moments approach to asymptotically unbiased Synthetic Controls," Journal of Econometrics, Elsevier, vol. 244(1).
    18. Joseph Fry, 2023. "A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls," Papers 2312.01209, arXiv.org, revised Mar 2024.
    19. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    20. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.06454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.