IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.04164.html
   My bibliography  Save this paper

CoFinDiff: Controllable Financial Diffusion Model for Time Series Generation

Author

Listed:
  • Yuki Tanaka
  • Ryuji Hashimoto
  • Takehiro Takayanagi
  • Zhe Piao
  • Yuri Murayama
  • Kiyoshi Izumi

Abstract

The generation of synthetic financial data is a critical technology in the financial domain, addressing challenges posed by limited data availability. Traditionally, statistical models have been employed to generate synthetic data. However, these models fail to capture the stylized facts commonly observed in financial data, limiting their practical applicability. Recently, machine learning models have been introduced to address the limitations of statistical models; however, controlling synthetic data generation remains challenging. We propose CoFinDiff (Controllable Financial Diffusion model), a synthetic financial data generation model based on conditional diffusion models that accept conditions about the synthetic time series. By incorporating conditions derived from price data into the conditional diffusion model via cross-attention, CoFinDiff learns the relationships between the conditions and the data, generating synthetic data that align with arbitrary conditions. Experimental results demonstrate that: (i) synthetic data generated by CoFinDiff capture stylized facts; (ii) the generated data accurately meet specified conditions for trends and volatility; (iii) the diversity of the generated data surpasses that of the baseline models; and (iv) models trained on CoFinDiff-generated data achieve improved performance in deep hedging task.

Suggested Citation

  • Yuki Tanaka & Ryuji Hashimoto & Takehiro Takayanagi & Zhe Piao & Yuri Murayama & Kiyoshi Izumi, 2025. "CoFinDiff: Controllable Financial Diffusion Model for Time Series Generation," Papers 2503.04164, arXiv.org.
  • Handle: RePEc:arx:papers:2503.04164
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.04164
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.04164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.