IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v23y2023i1p111-122.html
   My bibliography  Save this article

Empirical deep hedging

Author

Listed:
  • Oskari Mikkilä
  • Juho Kanniainen

Abstract

Existing hedging strategies are typically based on specific financial models: either the strategies are directly based on a given option pricing model or stock price and volatility models are used indirectly by generating synthetic data on which an agent is trained with reinforcement learning. In this paper, we train an agent in a pure data-driven manner. Particularly, we do not need any specifications on volatility or jump dynamics but use large empirical intra-day data from actual stock and option markets. The agent is trained for the hedging of derivative securities using deep reinforcement learning (DRL) with continuous actions. The training data consists of intra-day option price observations on S&P500 index over 6 years, and top of that, we use other data periods for validation and testing. We have two important empirical results. First, a DRL agent trained using synthetic data generated from a calibrated stochastic volatility model outperforms the classic Black–Scholes delta hedging strategy. Second, and more importantly, we find that a DRL agent, which is empirically trained directly using actual intra-day stock and option prices without the prior specification of the underlying volatility or jump processes, has superior performance compared with the use of synthetic data. This implies that DRL can capture the dynamics of S&P500 from the actual intra-day data and to self-learn how to hedge actual options efficiently.

Suggested Citation

  • Oskari Mikkilä & Juho Kanniainen, 2023. "Empirical deep hedging," Quantitative Finance, Taylor & Francis Journals, vol. 23(1), pages 111-122, January.
  • Handle: RePEc:taf:quantf:v:23:y:2023:i:1:p:111-122
    DOI: 10.1080/14697688.2022.2136037
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2022.2136037
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2022.2136037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Is the difference between deep hedging and delta hedging a statistical arbitrage?," Papers 2407.14736, arXiv.org, revised Oct 2024.
    2. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    3. Maciej Wysocki & Robert 'Slepaczuk, 2024. "Construction and Hedging of Equity Index Options Portfolios," Papers 2407.13908, arXiv.org.
    4. Naman Krishna Pande & Puneet Pasricha & Arun Kumar & Arvind Kumar Gupta, 2024. "European Option Pricing in Regime Switching Framework via Physics-Informed Residual Learning," Papers 2410.10474, arXiv.org.
    5. Anubha Goel & Puneet Pasricha & Juho Kanniainen, 2024. "Time-Series Foundation Model for Value-at-Risk," Papers 2410.11773, arXiv.org, revised Oct 2024.
    6. Chunhui Qiao & Xiangwei Wan, 2024. "Enhancing Black-Scholes Delta Hedging via Deep Learning," Papers 2407.19367, arXiv.org, revised Aug 2024.
    7. Masanori Hirano & Kentaro Minami & Kentaro Imajo, 2023. "Adversarial Deep Hedging: Learning to Hedge without Price Process Modeling," Papers 2307.13217, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:23:y:2023:i:1:p:111-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.