IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.05521.html
   My bibliography  Save this paper

Deep Reinforcement Learning Algorithms for Option Hedging

Author

Listed:
  • Andrei Neagu
  • Fr'ed'eric Godin
  • Leila Kosseim

Abstract

Dynamic hedging is a financial strategy that consists in periodically transacting one or multiple financial assets to offset the risk associated with a correlated liability. Deep Reinforcement Learning (DRL) algorithms have been used to find optimal solutions to dynamic hedging problems by framing them as sequential decision-making problems. However, most previous work assesses the performance of only one or two DRL algorithms, making an objective comparison across algorithms difficult. In this paper, we compare the performance of eight DRL algorithms in the context of dynamic hedging; Monte Carlo Policy Gradient (MCPG), Proximal Policy Optimization (PPO), along with four variants of Deep Q-Learning (DQL) and two variants of Deep Deterministic Policy Gradient (DDPG). Two of these variants represent a novel application to the task of dynamic hedging. In our experiments, we use the Black-Scholes delta hedge as a baseline and simulate the dataset using a GJR-GARCH(1,1) model. Results show that MCPG, followed by PPO, obtain the best performance in terms of the root semi-quadratic penalty. Moreover, MCPG is the only algorithm to outperform the Black-Scholes delta hedge baseline with the allotted computational budget, possibly due to the sparsity of rewards in our environment.

Suggested Citation

  • Andrei Neagu & Fr'ed'eric Godin & Leila Kosseim, 2025. "Deep Reinforcement Learning Algorithms for Option Hedging," Papers 2504.05521, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2504.05521
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.05521
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    2. Oskari Mikkilä & Juho Kanniainen, 2023. "Empirical deep hedging," Quantitative Finance, Taylor & Francis Journals, vol. 23(1), pages 111-122, January.
    3. Saeed Marzban & Erick Delage & Jonathan Yu-Meng Li, 2023. "Deep reinforcement learning for option pricing and hedging under dynamic expectile risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 23(10), pages 1411-1430, October.
    4. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
    5. Jay Cao & Jacky Chen & Soroush Farghadani & John Hull & Zissis Poulos & Zeyu Wang & Jun Yuan, 2022. "Gamma and Vega Hedging Using Deep Distributional Reinforcement Learning," Papers 2205.05614, arXiv.org, revised Jan 2023.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Chong, Wing Fung & Cui, Haoen & Li, Yuxuan, 2023. "Pseudo-model-free hedging for variable annuities via deep reinforcement learning," Annals of Actuarial Science, Cambridge University Press, vol. 17(3), pages 503-546, November.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Alexandre Carbonneau & Frédéric Godin, 2021. "Equal risk pricing of derivatives with deep hedging," Quantitative Finance, Taylor & Francis Journals, vol. 21(4), pages 593-608, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    2. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Is the difference between deep hedging and delta hedging a statistical arbitrage?," Papers 2407.14736, arXiv.org, revised Oct 2024.
    3. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    4. Xianhua Peng & Xiang Zhou & Bo Xiao & Yi Wu, 2024. "A Risk Sensitive Contract-unified Reinforcement Learning Approach for Option Hedging," Papers 2411.09659, arXiv.org.
    5. Jay Cao & Jacky Chen & Soroush Farghadani & John Hull & Zissis Poulos & Zeyu Wang & Jun Yuan, 2022. "Gamma and Vega Hedging Using Deep Distributional Reinforcement Learning," Papers 2205.05614, arXiv.org, revised Jan 2023.
    6. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    7. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    8. Horikawa, Hiroaki & Nakagawa, Kei, 2024. "Relationship between deep hedging and delta hedging: Leveraging a statistical arbitrage strategy," Finance Research Letters, Elsevier, vol. 62(PA).
    9. Chunhui Qiao & Xiangwei Wan, 2024. "Enhancing Black-Scholes Delta Hedging via Deep Learning," Papers 2407.19367, arXiv.org, revised Aug 2024.
    10. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    11. Parisa Davar & Fr'ed'eric Godin & Jose Garrido, 2024. "Catastrophic-risk-aware reinforcement learning with extreme-value-theory-based policy gradients," Papers 2406.15612, arXiv.org, revised Jun 2024.
    12. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    13. Ratner, Mitchell & Chiu, Chih-Chieh (Jason), 2013. "Hedging stock sector risk with credit default swaps," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 18-25.
    14. Chuong Luong & Nikolai Dokuchaev, 2018. "Forecasting of Realised Volatility with the Random Forests Algorithm," JRFM, MDPI, vol. 11(4), pages 1-15, October.
    15. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    16. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    17. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    18. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    19. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    20. Robert F. Engle & Emil N. Siriwardane, 2018. "Structural GARCH: The Volatility-Leverage Connection," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 449-492.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.05521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.