IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.03471.html
   My bibliography  Save this paper

Constructing elicitable risk measures

Author

Listed:
  • Akif Ince
  • Marlon Moresco
  • Ilaria Peri
  • Silvana M. Pesenti

Abstract

We provide a constructive way of defining new elicitable risk measures that are characterised by a multiplicative scoring function. We show that depending on the choice of the scoring function's components, the resulting risk measure possesses properties such as monotonicity, translation invariance, convexity, and positive homogeneity. Our framework encompasses the majority of well-known elicitable risk measures including all elicitable convex and coherent risk measures. Our setting moreover allows to construct novel elicitable risk measures that are, for example, convex but not coherent. Furthermore, we discuss how higher-order elicitability, such as jointly eliciting the mean and variance or different quantile levels, fall within our setting.

Suggested Citation

  • Akif Ince & Marlon Moresco & Ilaria Peri & Silvana M. Pesenti, 2025. "Constructing elicitable risk measures," Papers 2503.03471, arXiv.org.
  • Handle: RePEc:arx:papers:2503.03471
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.03471
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Zachary J. Smith & J. Eric Bickel, 2022. "Weighted Scoring Rules and Convex Risk Measures," Operations Research, INFORMS, vol. 70(6), pages 3371-3385, November.
    4. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    5. Chen, Zehua, 1996. "Conditional Lp-quantiles and their application to the testing of symmetry in non-parametric regression," Statistics & Probability Letters, Elsevier, vol. 29(2), pages 107-115, August.
    6. Silvana M. Pesenti & Steven Vanduffel, 2023. "Optimal Transport Divergences induced by Scoring Functions," Papers 2311.12183, arXiv.org, revised Apr 2024.
    7. Eric Neyman & Tim Roughgarden, 2023. "From Proper Scoring Rules to Max-Min Optimal Forecast Aggregation," Operations Research, INFORMS, vol. 71(6), pages 2175-2195, November.
    8. Johanna F. Ziegel, 2016. "Coherence And Elicitability," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 901-918, October.
    9. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    10. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    11. M. Burzoni & I. Peri & C. M. Ruffo, 2017. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1735-1743, November.
    12. Matteo Burzoni & Ilaria Peri & Chiara Maria Ruffo, 2016. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Papers 1603.09491, arXiv.org, revised Feb 2017.
    13. Akif Ince & Ilaria Peri & Silvana Pesenti, 2021. "Risk contributions of lambda quantiles," Papers 2106.14824, arXiv.org, revised Nov 2022.
    14. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    15. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    16. A. Ince & I. Peri & S. Pesenti, 2022. "Risk contributions of lambda quantiles," Quantitative Finance, Taylor & Francis Journals, vol. 22(10), pages 1871-1891, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvana M. Pesenti & Steven Vanduffel, 2023. "Optimal Transport Divergences induced by Scoring Functions," Papers 2311.12183, arXiv.org, revised Apr 2024.
    2. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    3. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    4. Tobias Fissler & Fangda Liu & Ruodu Wang & Linxiao Wei, 2024. "Elicitability and identifiability of tail risk measures," Papers 2404.14136, arXiv.org, revised Jun 2024.
    5. Valeria Bignozzi & Matteo Burzoni & Cosimo Munari, 2020. "Risk Measures Based on Benchmark Loss Distributions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(2), pages 437-475, June.
    6. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    7. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    8. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    9. Xia Han & Peng Liu, 2024. "Robust Lambda-quantiles and extremal distributions," Papers 2406.13539, arXiv.org, revised May 2025.
    10. Mucahit Aygun & Fabio Bellini & Roger J. A. Laeven, 2023. "Elicitability of Return Risk Measures," Papers 2302.13070, arXiv.org, revised Mar 2023.
    11. Paul Embrechts & Tiantian Mao & Qiuqi Wang & Ruodu Wang, 2021. "Bayes risk, elicitability, and the Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1190-1217, October.
    12. Owusu Junior, Peterson & Alagidede, Imhotep, 2020. "Risks in emerging markets equities: Time-varying versus spatial risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    13. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    14. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    15. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    16. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    17. Collin Philipps, 2022. "Interpreting Expectiles," Working Papers 2022-01, Department of Economics and Geosciences, US Air Force Academy.
    18. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    19. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    20. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.03471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.