IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.09181.html
   My bibliography  Save this paper

Generalized Orlicz premia

Author

Listed:
  • Mucahit Aygun
  • Fabio Bellini
  • Roger J. A. Laeven

Abstract

We introduce a generalized version of Orlicz premia, based on possibly non-convex loss functions. We show that this generalized definition covers a variety of relevant examples, such as the geometric mean and the expectiles, while at the same time retaining a number of relevant properties. We establish that cash-additivity leads to $L^p$-quantiles, extending a classical result on 'collapse to the mean' for convex Orlicz premia. We then focus on the geometrically convex case, discussing the dual representation of generalized Orlicz premia and comparing it with a multiplicative form of the standard dual representation for the convex case. Finally, we show that generalized Orlicz premia arise naturally as the only elicitable, positively homogeneous, monotone and normalized functionals.

Suggested Citation

  • Mucahit Aygun & Fabio Bellini & Roger J. A. Laeven, 2025. "Generalized Orlicz premia," Papers 2507.09181, arXiv.org.
  • Handle: RePEc:arx:papers:2507.09181
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.09181
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.