IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v117y2024icp140-153.html
   My bibliography  Save this article

Law-invariant return and star-shaped risk measures

Author

Listed:
  • Laeven, Roger J.A.
  • Rosazza Gianin, Emanuela
  • Zullino, Marco

Abstract

This paper presents novel characterization results for classes of law-invariant star-shaped functionals. We begin by establishing characterizations for positively homogeneous and star-shaped functionals that exhibit second- or convex-order stochastic dominance consistency. Building on these characterizations, we proceed to derive Kusuoka-type representations for these functionals, shedding light on their mathematical structure and intimate connections to Value-at-Risk and Expected Shortfall. Furthermore, we offer representations of general law-invariant star-shaped functionals as robustifications of Value-at-Risk. Notably, our results are versatile, accommodating settings that may, or may not, involve monotonicity and/or cash-additivity. All of these characterizations are developed within a general locally convex topological space of random variables, ensuring the broad applicability of our results in various financial, insurance and probabilistic contexts.

Suggested Citation

  • Laeven, Roger J.A. & Rosazza Gianin, Emanuela & Zullino, Marco, 2024. "Law-invariant return and star-shaped risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 140-153.
  • Handle: RePEc:eee:insuma:v:117:y:2024:i:c:p:140-153
    DOI: 10.1016/j.insmatheco.2024.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Claudia Ravanelli & Gregor Svindland, 2014. "Comonotone Pareto optimal allocations for law invariant robust utilities on L 1," Finance and Stochastics, Springer, vol. 18(1), pages 249-269, January.
    4. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    5. Fabio Bellini & Pablo Koch-Medina & Cosimo Munari & Gregor Svindland, 2018. "Law-invariant functionals on general spaces of random variables," Papers 1808.00821, arXiv.org, revised Jan 2021.
    6. Beatrice Acciaio, 2007. "Optimal risk sharing with non-monotone monetary functionals," Finance and Stochastics, Springer, vol. 11(2), pages 267-289, April.
    7. Massimo Marinacci, 2002. "Probabilistic Sophistication and Multiple Priors," Econometrica, Econometric Society, vol. 70(2), pages 755-764, March.
    8. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, August.
    9. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    10. Tomasz, Strzalecki, 2011. "Probabilistic sophistication and variational preferences," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2117-2125, September.
    11. Erio Castagnoli & Giacomo Cattelan & Fabio Maccheroni & Claudio Tebaldi & Ruodu Wang, 2021. "Star-shaped Risk Measures," Papers 2103.15790, arXiv.org, revised Apr 2022.
    12. Haezendonck, J. & Goovaerts, M., 1982. "A new premium calculation principle based on Orlicz norms," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 41-53, January.
    13. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    14. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    15. Machina, Mark J & Schmeidler, David, 1992. "A More Robust Definition of Subjective Probability," Econometrica, Econometric Society, vol. 60(4), pages 745-780, July.
    16. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    17. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    2. Bingchu Nie & Dejian Tian & Long Jiang, 2024. "Set-valued Star-Shaped Risk Measures," Papers 2402.18014, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    2. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    3. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    4. Mucahit Aygun & Fabio Bellini & Roger J. A. Laeven, 2023. "Elicitability of Return Risk Measures," Papers 2302.13070, arXiv.org, revised Mar 2023.
    5. Roger J. A. Laeven & Emanuela Rosazza Gianin, 2022. "Quasi-Logconvex Measures of Risk," Papers 2208.07694, arXiv.org.
    6. Roger J. A. Laeven & Emanuela Rosazza Gianin & Marco Zullino, 2023. "Dynamic Return and Star-Shaped Risk Measures via BSDEs," Papers 2307.03447, arXiv.org, revised Jul 2023.
    7. Liebrich, Felix-Benedikt & Svindland, Gregor, 2017. "Model spaces for risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 150-165.
    8. Sigrid Källblad, 2017. "Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals," Finance and Stochastics, Springer, vol. 21(2), pages 397-425, April.
    9. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.
    10. Claudia Ravanelli & Gregor Svindland, 2014. "Comonotone Pareto optimal allocations for law invariant robust utilities on L 1," Finance and Stochastics, Springer, vol. 18(1), pages 249-269, January.
    11. Liebrich, Felix-Benedikt & Svindland, Gregor, 2019. "Efficient allocations under law-invariance: A unifying approach," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 28-45.
    12. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    13. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    14. Cerreia-Vioglio, Simone & Maccheroni, Fabio & Marinacci, Massimo & Montrucchio, Luigi, 2012. "Probabilistic sophistication, second order stochastic dominance and uncertainty aversion," Journal of Mathematical Economics, Elsevier, vol. 48(5), pages 271-283.
    15. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    16. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    17. Shengzhong Chen & Niushan Gao & Denny Leung & Lei Li, 2021. "Automatic Fatou Property of Law-invariant Risk Measures," Papers 2107.08109, arXiv.org, revised Jan 2022.
    18. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    19. Simone Cerreia-Vioglio & Paolo Ghirardato & Fabio Maccheroni & Massimo Marinacci & Marciano Siniscalchi, 2011. "Rational preferences under ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(2), pages 341-375, October.
    20. Grant, Simon & Rich, Patricia & Stecher, Jack, 2022. "Bayes and Hurwicz without Bernoulli," Journal of Economic Theory, Elsevier, vol. 199(C).

    More about this item

    Keywords

    Return risk measures; Star-shapedness; Law-invariance; SSD- and CSD-consistency; Value-at-risk; Expected shortfall;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:117:y:2024:i:c:p:140-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.