IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.15548.html
   My bibliography  Save this paper

Rationalizability and Monotonocity in Games with Incomplete Information

Author

Listed:
  • Joep van Sloun

Abstract

This paper examines games with strategic complements or substitutes and incomplete information, where players are uncertain about the opponents' parameters. We assume that the players' beliefs about the opponent's parameters are selected from some given set of beliefs. One extreme is the case where these sets only contain a single belief, representing a scenario where the players' actual beliefs about the parameters are commonly known among the players. Another extreme is the situation where these sets contain all possible beliefs, representing a scenario where the players have no information about the opponents' beliefs about parameters. But we also allow for intermediate cases, where these sets contain some, but not all, possible beliefs about the parameters. We introduce an assumption of weakly increasing differences that takes both the choice belief and parameter belief of a player into account. Under this assumption, we demonstrate that greater choice-parameter beliefs leads to greater optimal choices. Moreover, we show that the greatest and least point rationalizable choice of a player is increasing in their parameter, and these can be determined through an iterative procedure. In each round of the iterative procedure, the lowest surviving choice is optimal for the lowest choice-parameter belief, while the greatest surviving choice is optimal for the highest choice-parameter belief.

Suggested Citation

  • Joep van Sloun, 2025. "Rationalizability and Monotonocity in Games with Incomplete Information," Papers 2501.15548, arXiv.org.
  • Handle: RePEc:arx:papers:2501.15548
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.15548
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philip J. Reny, 2011. "On the Existence of Monotone Pure‐Strategy Equilibria in Bayesian Games," Econometrica, Econometric Society, vol. 79(2), pages 499-553, March.
    2. Van Zandt, Timothy & Vives, Xavier, 2007. "Monotone equilibria in Bayesian games of strategic complementarities," Journal of Economic Theory, Elsevier, vol. 134(1), pages 339-360, May.
    3. Battigalli Pierpaolo & Siniscalchi Marciano, 2003. "Rationalization and Incomplete Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 3(1), pages 1-46, June.
    4. Bulow, Jeremy I & Geanakoplos, John D & Klemperer, Paul D, 1985. "Multimarket Oligopoly: Strategic Substitutes and Complements," Journal of Political Economy, University of Chicago Press, vol. 93(3), pages 488-511, June.
    5. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    6. Susan Athey, 2002. "Monotone Comparative Statics under Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 187-223.
    7. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    8. David McAdams, 2003. "Isotone Equilibrium in Games of Incomplete Information," Econometrica, Econometric Society, vol. 71(4), pages 1191-1214, July.
    9. , & , & ,, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    10. Christian W Bach & Andrés Perea, 2021. "Incomplete information and iterated strict dominance," Oxford Economic Papers, Oxford University Press, vol. 73(2), pages 820-836.
    11. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    12. Battigalli, Pierpaolo, 2003. "Rationalizability in infinite, dynamic games with incomplete information," Research in Economics, Elsevier, vol. 57(1), pages 1-38, March.
    13. Athey, Susan, 2001. "Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information," Econometrica, Econometric Society, vol. 69(4), pages 861-889, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunimoto, Takashi & Yamashita, Takuro, 2020. "Order on types based on monotone comparative statics," Journal of Economic Theory, Elsevier, vol. 189(C).
    2. Mensch, Jeffrey, 2020. "On the existence of monotone pure-strategy perfect Bayesian equilibrium in games with complementarities," Journal of Economic Theory, Elsevier, vol. 187(C).
    3. Prokopovych, Pavlo & Yannelis, Nicholas C., 2019. "On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information," Journal of Economic Theory, Elsevier, vol. 184(C).
    4. repec:osf:socarx:ymzrd_v1 is not listed on IDEAS
    5. Łukasz Balbus & Paweł Dziewulski & Kevin Reffett & Łukasz Woźny, 2015. "Differential information in large games with strategic complementarities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 201-243, May.
    6. Kets, Willemien & Kager, Wouter & Sandroni, Alvaro, 2022. "The value of a coordination game," Journal of Economic Theory, Elsevier, vol. 201(C).
    7. Pavlo Prokopovych & Nicholas C. Yannelis, 2022. "On nondegenerate equilibria of double auctions with several buyers and a price floor," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 625-654, April.
    8. Han, Seungjin & Sam, Alex & Shin, Youngki, 2024. "Monotone equilibrium in matching markets with signaling," Journal of Economic Theory, Elsevier, vol. 216(C).
    9. Wei He & Yeneng Sun & Hanping Xu, 2025. "Monotone Perfection," Papers 2509.01358, arXiv.org, revised Oct 2025.
    10. Mason, Robin & Valentinyi, Ã kos, 2007. "The existence and uniqueness of monotone pure strategy equilibrium in Bayesian games," Discussion Paper Series In Economics And Econometrics 0710, Economics Division, School of Social Sciences, University of Southampton.
    11. He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
    12. Philip J. Reny, 2011. "On the Existence of Monotone Pure‐Strategy Equilibria in Bayesian Games," Econometrica, Econometric Society, vol. 79(2), pages 499-553, March.
    13. Rabah Amir, 2005. "Supermodularity and Complementarity in Economics: An Elementary Survey," Southern Economic Journal, John Wiley & Sons, vol. 71(3), pages 636-660, January.
    14. Prokopovych, Pavlo & Yannelis, Nicholas C., 2023. "On monotone pure-strategy Bayesian-Nash equilibria of a generalized contest," Games and Economic Behavior, Elsevier, vol. 140(C), pages 348-362.
    15. Miettinen, Topi, 2013. "Promises and conventions – An approach to pre-play agreements," Games and Economic Behavior, Elsevier, vol. 80(C), pages 68-84.
    16. Luciano De Castro, 2012. "Correlation of Types in Bayesian Games," Discussion Papers 1556, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    17. Vives, Xavier & Vravosinos, Orestis, 2024. "Strategic complementarity in games," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    18. Manili, Julien, 2024. "Order independence for rationalizability," Games and Economic Behavior, Elsevier, vol. 143(C), pages 152-160.
    19. Jonathan Spiteri & Jonathan James & Michele Belot, 2018. "A Computer-Based Incentivized Food Basket Choice Tool: Presentation and Evaluation," Department of Economics Working Papers 69/18, University of Bath, Department of Economics.
    20. Alan Beggs & A.W. Beggs, 2011. "Regularity and Stability in Monotone Bayesian Games," Economics Series Working Papers 587, University of Oxford, Department of Economics.
    21. Bajoori, Elnaz & Vermeulen, Dries, 2019. "Equilibrium selection in interdependent value auctions," Mathematical Social Sciences, Elsevier, vol. 98(C), pages 47-56.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.15548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.