IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.08071.html
   My bibliography  Save this paper

Contagion on Financial Networks: An Introduction

Author

Listed:
  • Sunday Akukodi Ugwu

Abstract

This mini-project models propagation of shocks, in time point, through links in connected banks. In particular, financial network of 100 banks out of which 15 are shocked to default (that is, 85.00% of the banks are solvent) is modelled using Erdos and Renyi network -- directed, weighted and randomly generated network. Shocking some banks in a financial network implies removing their assets and redistributing their liabilities to other connected ones in the network. The banks are nodes and two ranges of probability values determine tendency of having a link between a pair of banks. Our major finding shows that the ranges of probability values and banks' percentage solvency have positive correlation.

Suggested Citation

  • Sunday Akukodi Ugwu, 2024. "Contagion on Financial Networks: An Introduction," Papers 2402.08071, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2402.08071
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.08071
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    2. Hamed Amini & Rama Cont & Andreea Minca, 2016. "Resilience To Contagion In Financial Networks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 329-365, April.
    3. Abduraimova, Kumushoy & Nahai-Williamson, Paul, 2021. "Solvency distress contagion risk: network structure, bank heterogeneity and systemic resilience," Bank of England working papers 909, Bank of England.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils Detering & Thilo Meyer-Brandis & Konstantinos Panagiotou & Daniel Ritter, 2018. "Financial Contagion in a Generalized Stochastic Block Model," Papers 1803.08169, arXiv.org, revised Dec 2019.
    2. Irena Barjav{s}i'c & Stefano Battiston & Vinko Zlati'c, 2023. "Credit Valuation Adjustment in Financial Networks," Papers 2305.16434, arXiv.org.
    3. Thibaut PIQUARD & Dilyara SALAKHOVA, 2018. "Macroprudential policy instruments: a bulwark against interbank contagion risk [Les instruments de politique macroprudentielle : un rempart contre les risques de contagion interbancaire]," Bulletin de la Banque de France, Banque de France, issue 218.
    4. Qian, Qian & Chao, Xiangrui & Feng, Hairong, 2023. "Internal or external control? How to respond to credit risk contagion in complex enterprises network," International Review of Financial Analysis, Elsevier, vol. 87(C).
    5. Luitgard Anna Maria Veraart, 2020. "Distress and default contagion in financial networks," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 705-737, July.
    6. Francesca Biagini & Andrea Mazzon & Thilo Meyer-Brandis, 2018. "Financial asset bubbles in banking networks," Papers 1806.01728, arXiv.org.
    7. T. R. Hurd, 2018. "Bank Panics And Fire Sales, Insolvency And Illiquidity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-30, September.
    8. Michel Alexandre & Gilberto Tadeu Lima & Luca Riccetti & Alberto Russo, 2023. "The financial network channel of monetary policy transmission: an agent-based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 533-571, July.
    9. Valentina Macchiati & Giuseppe Brandi & Tiziana Di Matteo & Daniela Paolotti & Guido Caldarelli & Giulio Cimini, 2022. "Systemic liquidity contagion in the European interbank market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 443-474, April.
    10. Hamed Amini & Zachary Feinstein, 2020. "Optimal Network Compression," Papers 2008.08733, arXiv.org, revised Jul 2022.
    11. Nan Chen & Xin Liu & David D. Yao, 2016. "An Optimization View of Financial Systemic Risk Modeling: Network Effect and Market Liquidity Effect," Operations Research, INFORMS, vol. 64(5), pages 1089-1108, October.
    12. Chen, Yu & Jin, Shuyue & Wang, Xiasi, 2021. "Solvency contagion risk in the Chinese commercial banks’ network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    13. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    14. Sadamori Kojaku & Giulio Cimini & Guido Caldarelli & Naoki Masuda, 2018. "Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis," Papers 1802.05139, arXiv.org.
    15. Mardi Dungey & Moses Kangogo & Vladimir Volkov, 2022. "Dynamic effects of network exposure on equity markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 569-629, December.
    16. Franklin Allen & Xian Gu, 2018. "The Interplay between Regulations and Financial Stability," Journal of Financial Services Research, Springer;Western Finance Association, vol. 53(2), pages 233-248, June.
    17. Silva, Thiago Christiano & Souza, Sergio Rubens Stancato & Tabak, Benjamin Miranda, 2017. "Monitoring vulnerability and impact diffusion in financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 109-135.
    18. Brandi, Giuseppe & Di Clemente, Riccardo & Cimini, Giulio, 2018. "Epidemics of liquidity shortages in interbank markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 255-267.
    19. Paolo Bartesaghi & Michele Benzi & Gian Paolo Clemente & Rosanna Grassi & Ernesto Estrada, 2019. "Risk-dependent centrality in economic and financial networks," Papers 1907.07908, arXiv.org, revised Apr 2020.
    20. Leventides, John & Loukaki, Kalliopi & Papavassiliou, Vassilios G., 2019. "Simulating financial contagion dynamics in random interbank networks," Journal of Economic Behavior & Organization, Elsevier, vol. 158(C), pages 500-525.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.08071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.