IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.01728.html
   My bibliography  Save this paper

Financial asset bubbles in banking networks

Author

Listed:
  • Francesca Biagini
  • Andrea Mazzon
  • Thilo Meyer-Brandis

Abstract

We consider a banking network represented by a system of stochastic differential equations coupled by their drift. We assume a core-periphery structure, and that the banks in the core hold a bubbly asset. The banks in the periphery have not direct access to the bubble, but can take initially advantage from its increase by investing on the banks in the core. Investments are modeled by the weight of the links, which is a function of the robustness of the banks. In this way, a preferential attachment mechanism towards the core takes place during the growth of the bubble. We then investigate how the bubble distort the shape of the network, both for finite and infinitely large systems, assuming a non vanishing impact of the core on the periphery. Due to the influence of the bubble, the banks are no longer independent, and the law of large numbers cannot be directly applied at the limit. This results in a term in the drift of the diffusions which does not average out, and that increases systemic risk at the moment of the burst. We test this feature of the model by numerical simulations.

Suggested Citation

  • Francesca Biagini & Andrea Mazzon & Thilo Meyer-Brandis, 2018. "Financial asset bubbles in banking networks," Papers 1806.01728, arXiv.org.
  • Handle: RePEc:arx:papers:1806.01728
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.01728
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus K. Brunnermeier & Isabel Schnabel, 2014. "Bubbles and Central Banks: Historical Perspectives," Working Papers 1411, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 31 Oct 2014.
    2. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    3. Nils Detering & Thilo Meyer-Brandis & Konstantinos Panagiotou & Daniel Ritter, 2016. "Managing Default Contagion in Inhomogeneous Financial Networks," Papers 1610.09542, arXiv.org, revised Jan 2021.
    4. E. Kromer & L. Overbeck & K. Zilch, 2016. "Systemic risk measures on general measurable spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 323-357, October.
    5. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    6. Brunnermeier, Markus K. & Oehmke, Martin, 2013. "Bubbles, Financial Crises, and Systemic Risk," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1221-1288, Elsevier.
    7. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    8. Hamed Amini & Rama Cont & Andreea Minca, 2016. "Resilience To Contagion In Financial Networks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 329-365, April.
    9. Hamed Amini & Rama Cont & Andreea Minca, 2012. "Stress Testing The Resilience Of Financial Networks," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-20.
    10. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    11. Nils Detering & Thilo Meyer-Brandis & Konstantinos Panagiotou & Daniel Ritter, 2018. "Financial Contagion in a Generalized Stochastic Block Model," Papers 1803.08169, arXiv.org, revised Dec 2019.
    12. Hamed Amini & Rama Cont & Andreea Minca, 2012. "Stress Testing The Resilience Of Financial Networks," World Scientific Book Chapters, in: Matheus R Grasselli & Lane P Hughston (ed.), Finance at Fields, chapter 2, pages 17-36, World Scientific Publishing Co. Pte. Ltd..
    13. Rene Carmona & Jean-Pierre Fouque & Seyyed Mostafa Mousavi & Li-Hsien Sun, 2016. "Systemic Risk and Stochastic Games with Delay," Papers 1607.06373, arXiv.org.
    14. Hamed Amini & Rama Cont & Andreea Minca, 2012. "Stress testing the resilience of financial networks," Post-Print hal-00801538, HAL.
    15. Hoffmann, Hannes & Meyer-Brandis, Thilo & Svindland, Gregor, 2016. "Risk-consistent conditional systemic risk measures," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2014-2037.
    16. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    17. Francesca Biagini & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2018. "On Fairness of Systemic Risk Measures," Papers 1803.09898, arXiv.org, revised Apr 2019.
    18. Hannes Hoffmann & Thilo Meyer-Brandis & Gregor Svindland, 2016. "Risk-Consistent Conditional Systemic Risk Measures," Papers 1609.07897, arXiv.org.
    19. Chen Chen & Garud Iyengar & Ciamac C. Moallemi, 2013. "An Axiomatic Approach to Systemic Risk," Management Science, INFORMS, vol. 59(6), pages 1373-1388, June.
    20. Hamed Amini & Andreea Minca, 2016. "Inhomogeneous Financial Networks and Contagious Links," Operations Research, INFORMS, vol. 64(5), pages 1109-1120, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. in 't Veld, Daan & van der Leij, Marco & Hommes, Cars, 2020. "The formation of a core-periphery structure in heterogeneous financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    2. Nils Detering & Thilo Meyer-Brandis & Konstantinos Panagiotou & Daniel Ritter, 2020. "Suffocating Fire Sales," Papers 2006.08110, arXiv.org, revised Nov 2021.
    3. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    4. Oliver Kley & Claudia Klüppelberg & Gesine Reinert, 2016. "Risk in a Large Claims Insurance Market with Bipartite Graph Structure," Operations Research, INFORMS, vol. 64(5), pages 1159-1176, October.
    5. Hamed Amini & Zachary Feinstein, 2020. "Optimal Network Compression," Papers 2008.08733, arXiv.org, revised Jul 2022.
    6. Hong Chen & Tan Wang & David D. Yao, 2021. "Financial Network and Systemic Risk—A Dynamic Model," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2441-2466, August.
    7. T. R. Hurd & Davide Cellai & Sergey Melnik & Quentin H. Shao, 2016. "Double Cascade Model Of Financial Crises," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-27, August.
    8. Kotlicki, Artur & Austin, Andrea & Humphry, David & Burnett, Hanna & Ridgill, Philip & Smith, Sam, 2023. "Network analysis of the UK reinsurance market," Bank of England working papers 1000, Bank of England.
    9. Hamed Amini & Andreea Minca, 2016. "Inhomogeneous Financial Networks and Contagious Links," Operations Research, INFORMS, vol. 64(5), pages 1109-1120, October.
    10. Amini, Hamed & Feinstein, Zachary, 2023. "Optimal network compression," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1439-1455.
    11. Hyun Hak Kim & Hosung Jung, 2019. "Systemic Risk of the Consumer Credit Network across Financial Institutions," Working Papers 2019-23, Economic Research Institute, Bank of Korea.
    12. Ahn, Dohyun & Kim, Kyoung-Kuk & Kwon, Eunji, 2023. "Multivariate stress scenario selection in interbank networks," Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
    13. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    14. Vitali, Stefania & Battiston, Stefano & Gallegati, Mauro, 2016. "Financial fragility and distress propagation in a network of regions," Journal of Economic Dynamics and Control, Elsevier, vol. 62(C), pages 56-75.
    15. Aditya Maheshwari & Andrey Sarantsev, 2017. "Modeling Financial System with Interbank Flows, Borrowing, and Investing," Papers 1707.03542, arXiv.org, revised Oct 2018.
    16. Yann Braouezec & Lakshithe Wagalath, 2018. "Risk-Based Capital Requirements and Optimal Liquidation in a Stress Scenario [Testing macroprudential stress tests: the risk of regulatory risk weights]," Review of Finance, European Finance Association, vol. 22(2), pages 747-782.
    17. Rama Cont & Andreea Minca, 2016. "Credit default swaps and systemic risk," Annals of Operations Research, Springer, vol. 247(2), pages 523-547, December.
    18. He, Yi & Wu, Shan & Tong, Mu, 2019. "Systemic risk and liquidity rescue in complex financial networks: Pit hole and black hole of liquidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    19. Yu-Sin Chang, 2018. "Systemic Risk and the Dependence Structures," Papers 1809.03425, arXiv.org.
    20. Carsten Chong & Claudia Kluppelberg, 2017. "Contagion in financial systems: A Bayesian network approach," Papers 1702.04287, arXiv.org, revised Jul 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.01728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.