IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.07152.html
   My bibliography  Save this paper

Inference for Synthetic Controls via Refined Placebo Tests

Author

Listed:
  • Lihua Lei
  • Timothy Sudijono

Abstract

The synthetic control method is often applied to problems with one treated unit and a small number of control units. A common inferential task in this setting is to test null hypotheses regarding the average treatment effect on the treated. Inference procedures that are justified asymptotically are often unsatisfactory due to (1) small sample sizes that render large-sample approximation fragile and (2) simplification of the estimation procedure that is implemented in practice. An alternative is permutation inference, which is related to a common diagnostic called the placebo test. It has provable Type-I error guarantees in finite samples without simplification of the method, when the treatment is uniformly assigned. Despite this robustness, the placebo test suffers from low resolution since the null distribution is constructed from only $N$ reference estimates, where $N$ is the sample size. This creates a barrier for statistical inference at a common level like $\alpha = 0.05$, especially when $N$ is small. We propose a novel leave-two-out procedure that bypasses this issue, while still maintaining the same finite-sample Type-I error guarantee under uniform assignment for a wide range of $N$. Unlike the placebo test whose Type-I error always equals the theoretical upper bound, our procedure often achieves a lower unconditional Type-I error than theory suggests; this enables useful inference in the challenging regime when $\alpha

Suggested Citation

  • Lihua Lei & Timothy Sudijono, 2024. "Inference for Synthetic Controls via Refined Placebo Tests," Papers 2401.07152, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2401.07152
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.07152
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    2. F. F. Gunsilius, 2023. "Distributional Synthetic Controls," Econometrica, Econometric Society, vol. 91(3), pages 1105-1117, May.
    3. Jinyong Hahn & Ruoyao Shi, 2017. "Synthetic Control and Inference," Econometrics, MDPI, vol. 5(4), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alemán, Christian & Busch, Christopher & Ludwig, Alexander & Santaeulàlia-Llopis, Raül, 2023. "Stage-based identification of policy effects," ICIR Working Paper Series 52/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    2. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    3. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    4. Christian Aleman & Christopher Busch & Alexander Ludwig & Raul Santaeulalia-Llopis, 2022. "A Stage-Based Identification of Policy Effects," PIER Working Paper Archive 22-026, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    5. Florian F Gunsilius, 2025. "A primer on optimal transport for causal inference with observational data," Papers 2503.07811, arXiv.org, revised Mar 2025.
    6. Songnian Chen & Junlong Feng, 2023. "Group-Heterogeneous Changes-in-Changes and Distributional Synthetic Controls," Papers 2307.15313, arXiv.org.
    7. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    8. Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
    9. Justin C. Wiltshire, 2023. "Walmart Supercenters and Monopsony Power: How A Large, Low-Wage Employer Impacts Local Labor Markets," Department Discussion Papers 2304, Department of Economics, University of Victoria.
    10. Fry, Joseph, 2024. "A method of moments approach to asymptotically unbiased Synthetic Controls," Journal of Econometrics, Elsevier, vol. 244(1).
    11. Guido W. Imbens & Davide Viviano, 2023. "Identification and Inference for Synthetic Controls with Confounding," Papers 2312.00955, arXiv.org.
    12. Lu Zhang & Xiaomeng Zhang & Xinyu Zhang, 2024. "Asymptotic Properties of the Distributional Synthetic Controls," Papers 2405.00953, arXiv.org, revised Aug 2024.
    13. Yixiao Sun & Haitian Xie & Yuhang Zhang, 2025. "Difference-in-Differences Meets Synthetic Control: Doubly Robust Identification and Estimation," Papers 2503.11375, arXiv.org.
    14. Nuno Garoupa & Rok Spruk, 2024. "Populist Constitutional Backsliding and Judicial Independence: Evidence from Turkiye," Papers 2410.02439, arXiv.org.
    15. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    16. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2023. "Populist Leaders and the Economy," American Economic Review, American Economic Association, vol. 113(12), pages 3249-3288, December.
    17. Maximiliano Marzetti & Rok Spruk, 2023. "Long-Term Economic Effects of Populist Legal Reforms: Evidence from Argentina," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 65(1), pages 60-95, March.
    18. Yang Haodong & Liu Jialin & Wang Gaofeng, 2025. "Knowledge Innovation Effect of University Computing Power in China: Evidence from the top500 Supercomputers," Research in Higher Education, Springer;Association for Institutional Research, vol. 66(1), pages 1-30, February.
    19. Sadeghi, Ali & Kibler, Ewald, 2022. "Do bankruptcy laws matter for entrepreneurship? A Synthetic Control Method analysis of a bankruptcy reform in Finland," Journal of Business Venturing Insights, Elsevier, vol. 18(C).
    20. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.07152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.