IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.02084.html
   My bibliography  Save this paper

Robust Long-Term Growth Rate of Expected Utility for Leveraged ETFs

Author

Listed:
  • Tim Leung
  • Hyungbin Park
  • Heejun Yeo

Abstract

This paper analyzes the robust long-term growth rate of expected utility and expected return from holding a leveraged exchange-traded fund (LETF). When the Markovian model parameters in the reference asset are uncertain, the robust long-term growth rate is derived by analyzing the worst-case parameters among an uncertainty set. We compute the growth rate and describe the optimal leverage ratio maximizing the robust long-term growth rate. To achieve this, the worst-case parameters are analyzed by the comparison principle, and the growth rate of the worst-case is computed using the martingale extraction method. The robust long-term growth rates are obtained explicitly under a number of models for the reference asset, including the geometric Brownian motion (GBM), Cox--Ingersoll--Ross (CIR), 3/2, and Heston and 3/2 stochastic volatility models. Additionally, we demonstrate the impact of stochastic interest rates, such as the Vasicek and inverse GARCH short rate models. This paper is an extended work of \citet{Leung2017}.

Suggested Citation

  • Tim Leung & Hyungbin Park & Heejun Yeo, 2023. "Robust Long-Term Growth Rate of Expected Utility for Leveraged ETFs," Papers 2310.02084, arXiv.org.
  • Handle: RePEc:arx:papers:2310.02084
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.02084
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robertson, Scott & Xing, Hao, 2015. "Large time behavior of solutions to semi-linear equations with quadratic growth in the gradient," LSE Research Online Documents on Economics 60578, London School of Economics and Political Science, LSE Library.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    4. repec:eme:mfppss:v:42:y:2016:i:5:p:438-448 is not listed on IDEAS
    5. Hyungbin Park & Heejun Yeo, 2022. "Dynamic and static fund separations and their stability for long-term optimal investments," Papers 2212.00391, arXiv.org, revised Mar 2023.
    6. Anis Matoussi & Dylan Possamaï & Chao Zhou, 2015. "Robust Utility Maximization In Nondominated Models With 2bsde: The Uncertain Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 258-287, April.
    7. Jarrow, Robert A., 2010. "Understanding the risk of leveraged ETFs," Finance Research Letters, Elsevier, vol. 7(3), pages 135-139, September.
    8. Revaz Tevzadze & Teimuraz Toronjadze & Tamaz Uzunashvili, 2013. "Robust utility maximization for a diffusion market model with misspecified coefficients," Finance and Stochastics, Springer, vol. 17(3), pages 535-563, July.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Tim Leung & Ronnie Sircar, 2015. "Implied Volatility of Leveraged ETF Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(2), pages 162-188, April.
    11. Ariel Neufeld & Marcel Nutz, 2018. "Robust Utility Maximization With Lã‰Vy Processes," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 82-105, January.
    12. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    13. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    14. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    15. Ariel Neufeld & Mario Sikic, 2016. "Robust Utility Maximization in Discrete-Time Markets with Friction," Papers 1610.09230, arXiv.org, revised May 2018.
    16. Tim Leung & Matthew Lorig & Andrea Pascucci, 2014. "Leveraged {ETF} implied volatilities from {ETF} dynamics," Papers 1404.6792, arXiv.org, revised Apr 2015.
    17. Tim Leung & Hyungbin Park, 2017. "LONG-TERM GROWTH RATE OF EXPECTED UTILITY FOR LEVERAGED ETFs: MARTINGALE EXTRACTION APPROACH," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-33, September.
    18. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Leung & Hyungbin Park, 2017. "LONG-TERM GROWTH RATE OF EXPECTED UTILITY FOR LEVERAGED ETFs: MARTINGALE EXTRACTION APPROACH," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-33, September.
    2. Xu, Yuhong, 2022. "Optimal growth under model uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    3. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    4. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    5. repec:uts:finphd:40 is not listed on IDEAS
    6. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    7. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    8. repec:wyi:journl:002117 is not listed on IDEAS
    9. Nian Yao, 2018. "Optimal leverage ratio estimate of various models for leveraged ETFs to exceed a target: Probability estimates of large deviations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-37, June.
    10. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    11. Ariel Neufeld & Mario Šikić, 2019. "Nonconcave robust optimization with discrete strategies under Knightian uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(2), pages 229-253, October.
    12. Tim Leung & Brian Ward, 2018. "Dynamic Index Tracking and Risk Exposure Control Using Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(2), pages 180-212, March.
    13. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018.
    14. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    15. Ariel Neufeld & Julian Sester & Mario Šikić, 2023. "Markov decision processes under model uncertainty," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 618-665, July.
    16. repec:wyi:journl:002142 is not listed on IDEAS
    17. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    18. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, January.
    19. Huy N. Chau & Miklós Rásonyi, 2019. "Robust utility maximisation in markets with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 677-696, July.
    20. Bin Chen & Yongmiao Hong, 2013. "Characteristic Function-Based Testing for Multifactor Continuous-Time Markov Models via Nonparametri," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    21. Lingjiong Zhu, 2013. "Optimal Strategies for a Long-Term Static Investor," Papers 1311.6179, arXiv.org, revised Oct 2014.
    22. Tim Leung & Matthew Lorig, 2016. "Optimal static quadratic hedging," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1341-1355, September.
    23. Yumo Zhang, 2021. "Dynamic Optimal Mean-Variance Portfolio Selection with a 3/2 Stochastic Volatility," Risks, MDPI, vol. 9(4), pages 1-21, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.02084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.