IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.03311.html
   My bibliography  Save this paper

Default Process Modeling and Credit Valuation Adjustment

Author

Listed:
  • David Xiao

Abstract

This paper presents a convenient framework for modeling default process and pricing derivative securities involving credit risk. The framework provides an integrated view of credit valuation adjustment by linking distance-to-default, default probability, survival probability, and default correlation together. We show that risky valuation is Martingale in our model. The framework reduces the technical issues of performing risky valuation to the same issues faced when performing the ordinary valuation. The numerical results show that the model prediction is consistent with the historical observations.

Suggested Citation

  • David Xiao, 2023. "Default Process Modeling and Credit Valuation Adjustment," Papers 2309.03311, arXiv.org.
  • Handle: RePEc:arx:papers:2309.03311
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.03311
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    3. Stefan Nagel & Amiyatosh Purnanandam, 2020. "Banks’ Risk Dynamics and Distance to Default," The Review of Financial Studies, Society for Financial Studies, vol. 33(6), pages 2421-2467.
    4. Stéphane Crépey, 2015. "Bilateral Counterparty Risk Under Funding Constraints—Part Ii: Cva," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 23-50, January.
    5. Lijun Bo & Agostino Capponi, 2014. "Bilateral credit valuation adjustment for large credit derivatives portfolios," Finance and Stochastics, Springer, vol. 18(2), pages 431-482, April.
    6. Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
    7. Stéphane Crépey, 2015. "Bilateral Counterparty Risk Under Funding Constraints—Part I: Pricing," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 1-22, January.
    8. Mr. Jorge A Chan-Lau, 2006. "Market-Based Estimation of Default Probabilities and its Application to Financial Market Surveillance," IMF Working Papers 2006/104, International Monetary Fund.
    9. Damiano Brigo & Fr'ed'eric Vrins, 2016. "Disentangling wrong-way risk: pricing CVA via change of measures and drift adjustment," Papers 1611.02877, arXiv.org.
    10. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    11. Jessen, Cathrine & Lando, David, 2015. "Robustness of distance-to-default," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, David, 2023. "Default Forecasting and Credit Valuation Adjustment," MPRA Paper 118578, University Library of Munich, Germany.
    2. Afik, Zvika & Arad, Ohad & Galil, Koresh, 2016. "Using Merton model for default prediction: An empirical assessment of selected alternatives," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 43-67.
    3. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    4. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    5. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    6. Stefan Nagel & Amiyatosh Purnanandam, 2020. "Banks’ Risk Dynamics and Distance to Default," The Review of Financial Studies, Society for Financial Studies, vol. 33(6), pages 2421-2467.
    7. Koresh Galil & Neta Gilat, 2019. "Predicting Default More Accurately: To Proxy or Not to Proxy for Default?," International Review of Finance, International Review of Finance Ltd., vol. 19(4), pages 731-758, December.
    8. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    9. Ye, Xiaoxia & Yu, Fan & Zhao, Ran, 2022. "Credit derivatives and corporate default prediction," Journal of Banking & Finance, Elsevier, vol. 138(C).
    10. Segev, Nimrod, 2020. "Identifying the risk-Taking channel of monetary transmission and the connection to economic activity," Journal of Banking & Finance, Elsevier, vol. 116(C).
    11. Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611, arXiv.org.
    12. repec:hum:wpaper:sfb649dp2014-040 is not listed on IDEAS
    13. Oliver Levine & Youchang Wu, 2021. "Asset Volatility and Capital Structure: Evidence from Corporate Mergers," Management Science, INFORMS, vol. 67(5), pages 2773-2798, May.
    14. Bhagat, Sanjai & Bolton, Brian & Lu, Jun, 2015. "Size, leverage, and risk-taking of financial institutions," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 520-537.
    15. Chen, Gaocai & Liu, Peng & Jiang, Aiying, 2024. "Does digital transformation in enterprises reduce debt default risk?," International Review of Economics & Finance, Elsevier, vol. 96(PA).
    16. Brogaard, Jonathan & Li, Dan & Xia, Ying, 2017. "Stock liquidity and default risk," Journal of Financial Economics, Elsevier, vol. 124(3), pages 486-502.
    17. Thakerngkiat, Narongdech & Nguyen, Hung T. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2023. "Does fear spur default risk?," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 879-899.
    18. Chien-Min Kang & Ming-Chieh Wang & Lin Lin, 2022. "Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions," IJFS, MDPI, vol. 10(2), pages 1-25, April.
    19. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    20. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    21. van Zundert, Jeroen, 2018. "Empirical studies on the cross-section of corporate bond and stock markets," Other publications TiSEM 338205fc-a031-4e06-a636-9, Tilburg University, School of Economics and Management.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.03311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.