IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.05987.html
   My bibliography  Save this paper

Liquidity takers behavior representation through a contrastive learning approach

Author

Listed:
  • Ruihua Ruan
  • Emmanuel Bacry
  • Jean-Franc{c}ois Muzy

Abstract

Thanks to the access to the labeled orders on the CAC40 data from Euronext, we are able to analyze agents' behaviors in the market based on their placed orders. In this study, we construct a self-supervised learning model using triplet loss to effectively learn the representation of agent market orders. By acquiring this learned representation, various downstream tasks become feasible. In this work, we utilize the K-means clustering algorithm on the learned representation vectors of agent orders to identify distinct behavior types within each cluster.

Suggested Citation

  • Ruihua Ruan & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2023. "Liquidity takers behavior representation through a contrastive learning approach," Papers 2306.05987, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2306.05987
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.05987
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhtaruzzaman, Md & Boubaker, Sabri & Lucey, Brian M. & Sensoy, Ahmet, 2021. "Is gold a hedge or a safe-haven asset in the COVID–19 crisis?," Economic Modelling, Elsevier, vol. 102(C).
    2. Bruno Biais & Fany Declerck & Sophie Moinas, 2016. "Who supplies liquidity, how and when?," BIS Working Papers 563, Bank for International Settlements.
    3. Robert J. Kauffman & Yuzhou Hu & Dan Ma, 2015. "Will high-frequency trading practices transform the financial markets in the Asia Pacific Region?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-27, December.
    4. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    5. Uctum, Remzi & Renou-Maissant, Patricia & Prat, Georges & Lecarpentier-Moyal, Sylvie, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, Elsevier, vol. 35(C), pages 43-56.
    6. George Jiang & Ingrid Lo & Giorgio Valente, 2014. "High-Frequency Trading around Macroeconomic News Announcements: Evidence from the U.S. Treasury Market," Staff Working Papers 14-56, Bank of Canada.
    7. Bank, Matthias & Baumann, Ralf H., 2016. "Price formation, market quality and the effects of reduced latency in the very short run," Research in International Business and Finance, Elsevier, vol. 37(C), pages 629-645.
    8. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    9. Benjamin Myers & Austin Gerig, 2013. "Simulating the Synchronizing Behavior of High-Frequency Trading in Multiple Markets," Papers 1311.4160, arXiv.org.
    10. Chiarella, Carl & Ladley, Daniel, 2016. "Chasing trends at the micro-level: The effect of technical trading on order book dynamics," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 119-131.
    11. Khapko, Mariana & Zoican, Marius, 2021. "Do speed bumps curb low-latency investment? Evidence from a laboratory market," Journal of Financial Markets, Elsevier, vol. 55(C).
    12. Albert J. Menkveld & Marius A. Zoican, 2017. "Need for Speed? Exchange Latency and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1188-1228.
    13. Jansen, Ivo Ph. & Nikiforov, Andrei L., 2022. "Intertemporal variation in abnormal volume around earnings announcements: “Distraction” or “flocking-and-dispersing”?," Economics Letters, Elsevier, vol. 218(C).
    14. Ma, Rui & Marshall, Ben R. & Nguyen, Hung T. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2022. "Climate events and return comovement," Journal of Financial Markets, Elsevier, vol. 61(C).
    15. Taiga Saito & Takanori Adachi & Teruo Nakatsuma & Akihiko Takahashi & Hiroshi Tsuda & Naoyuki Yoshino, 2018. "Trading and Ordering Patterns of Market Participants in High Frequency Trading Environment: Empirical Study in the Japanese Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(3), pages 179-220, September.
    16. Lei Wu & Kuan Xu & Qingbin Meng, 2021. "Information flow and price discovery dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 329-367, January.
    17. Gunther Capelle-Blancard, 2018. "What is the Point of (the Hundreds of Thousands of Billions of) Stock Transactions?," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 60(1), pages 15-33, March.
    18. Phiri, Andrew, 2017. "Threshold convergence between the federal fund rate and South African equity returns around the colocation period," Business and Economic Horizons (BEH), Prague Development Center (PRADEC), vol. 13(01).
    19. Marjolein E. Verhulst & Philippe Debie & Stephan Hageboeck & Joost M. E. Pennings & Cornelis Gardebroek & Axel Naumann & Paul van Leeuwen & Andres A. Trujillo‐Barrera & Lorenzo Moneta, 2021. "When two worlds collide: Using particle physics tools to visualize the limit order book," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1715-1734, November.
    20. Corsetti, Giancarlo & Lafarguette, Romain & Mehl, Arnaud, 2019. "Fast trading and the virtue of entropy: evidence from the foreign exchange market," Working Paper Series 2300, European Central Bank.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.05987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.