IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.01167.html
   My bibliography  Save this paper

Robust portfolio selection under Recovery Average Value at Risk

Author

Listed:
  • Cosimo Munari
  • Justin Pluckebaum
  • Stefan Weber

Abstract

We study mean-risk optimal portfolio problems where risk is measured by Recovery Average Value at Risk, a prominent example in the class of recovery risk measures. We establish existence results in the situation where the joint distribution of portfolio assets is known as well as in the situation where it is uncertain and only assumed to belong to a set of mixtures of benchmark distributions (mixture uncertainty) or to a cloud around a benchmark distribution (box uncertainty). The comparison with the classical Average Value at Risk shows that portfolio selection under its recovery version enables financial institutions to exert better control on the recovery on liabilities while still allowing for tractable computations.

Suggested Citation

  • Cosimo Munari & Justin Pluckebaum & Stefan Weber, 2023. "Robust portfolio selection under Recovery Average Value at Risk," Papers 2303.01167, arXiv.org.
  • Handle: RePEc:arx:papers:2303.01167
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.01167
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    2. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    3. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    4. Quaranta, Anna Grazia & Zaffaroni, Alberto, 2008. "Robust optimization of conditional value at risk and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2046-2056, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).
    2. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    3. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    4. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    5. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    6. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    7. Oleksandr Romanko & Helmut Mausser, 2016. "Robust scenario-based value-at-risk optimization," Annals of Operations Research, Springer, vol. 237(1), pages 203-218, February.
    8. Selim Mankaï, 2014. "Data-Driven Robust Optimization with Application to Portfolio Management," Working Papers 2014-104, Department of Research, Ipag Business School.
    9. repec:ipg:wpaper:2014-394 is not listed on IDEAS
    10. Chan, Timothy C.Y. & Mahmoudzadeh, Houra & Purdie, Thomas G., 2014. "A robust-CVaR optimization approach with application to breast cancer therapy," European Journal of Operational Research, Elsevier, vol. 238(3), pages 876-885.
    11. Tamara Teplova & Mikova Evgeniia & Qaiser Munir & Nataliya Pivnitskaya, 2023. "Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints," Economic Change and Restructuring, Springer, vol. 56(1), pages 515-535, February.
    12. Selim Mankaï & Khaled Guesmi, 2015. "Robust Portfolio Protection: A Scenarios-based Approach," Bankers, Markets & Investors, ESKA Publishing, issue 138, pages 30-44, September.
    13. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    14. Güray Kara & Ayşe Özmen & Gerhard-Wilhelm Weber, 2019. "Stability advances in robust portfolio optimization under parallelepiped uncertainty," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 241-261, March.
    15. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    16. Luan, Fei & Zhang, Weiguo & Liu, Yongjun, 2022. "Robust international portfolio optimization with worst‐case mean‐CVaR," European Journal of Operational Research, Elsevier, vol. 303(2), pages 877-890.
    17. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    18. Oleksandr Romanko & Helmut Mausser, 2016. "Robust scenario-based value-at-risk optimization," Annals of Operations Research, Springer, vol. 237(1), pages 203-218, February.
    19. Ghahtarani, Alireza & Najafi, Amir Abbas, 2013. "Robust goal programming for multi-objective portfolio selection problem," Economic Modelling, Elsevier, vol. 33(C), pages 588-592.
    20. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    21. Jianjun Gao & Ke Zhou & Duan Li & Xiren Cao, 2014. "Dynamic Mean-LPM and Mean-CVaR Portfolio Optimization in Continuous-time," Papers 1402.3464, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.01167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.