IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.11876.html
   My bibliography  Save this paper

Structural Modelling of Dynamic Networks and Identifying Maximum Likelihood

Author

Listed:
  • Christian Gourieroux
  • Joann Jasiak

Abstract

This paper considers nonlinear dynamic models where the main parameter of interest is a nonnegative matrix characterizing the network (contagion) effects. This network matrix is usually constrained either by assuming a limited number of nonzero elements (sparsity), or by considering a reduced rank approach for nonnegative matrix factorization (NMF). We follow the latter approach and develop a new probabilistic NMF method. We introduce a new Identifying Maximum Likelihood (IML) method for consistent estimation of the identified set of admissible NMF's and derive its asymptotic distribution. Moreover, we propose a maximum likelihood estimator of the parameter matrix for a given non-negative rank, derive its asymptotic distribution and the associated efficiency bound.

Suggested Citation

  • Christian Gourieroux & Joann Jasiak, 2022. "Structural Modelling of Dynamic Networks and Identifying Maximum Likelihood," Papers 2211.11876, arXiv.org.
  • Handle: RePEc:arx:papers:2211.11876
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.11876
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Paula, Aureo & Rasul, Imran & Souza, Pedro, 2018. "Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition," CEPR Discussion Papers 12792, C.E.P.R. Discussion Papers.
    2. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    3. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    4. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    5. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    6. Laurent Davezies & Xavier D'Haultf{oe}uille & Louise Laage, 2021. "Identification and Estimation of Average Causal Effects in Fixed Effects Logit Models," Papers 2105.00879, arXiv.org, revised Dec 2024.
    7. Giacomo De Giorgi & Michele Pellizzari & Silvia Redaelli, 2010. "Identification of Social Interactions through Partially Overlapping Peer Groups," American Economic Journal: Applied Economics, American Economic Association, vol. 2(2), pages 241-275, April.
    8. William A. Brock & Steven N. Durlauf, 2010. "Adoption Curves and Social Interactions," Journal of the European Economic Association, MIT Press, vol. 8(1), pages 232-251, March.
    9. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    10. Stolbova, Veronika & Monasterolo, Irene & Battiston, Stefano, 2018. "A Financial Macro-Network Approach to Climate Policy Evaluation," Ecological Economics, Elsevier, vol. 149(C), pages 239-253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thibaut Lamadon & Elena Manresa & Stephane Bonhomme, 2016. "Discretizing Unobserved Heterogeneity," 2016 Meeting Papers 1536, Society for Economic Dynamics.
    2. Shuowen Chen, 2022. "Indirect Inference for Nonlinear Panel Models with Fixed Effects," Papers 2203.10683, arXiv.org, revised Apr 2022.
    3. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    4. Raf Van Gestel & Tobias Müller & Johan Bosmans, 2018. "Learning from failure in healthcare: Dynamic panel evidence of a physician shock effect," Health Economics, John Wiley & Sons, Ltd., vol. 27(9), pages 1340-1353, September.
    5. Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
    6. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    7. Gindo Tampubolon, 2023. "Climate justice for persons with disability: Few harmed much, fewer still harmed too much," WIDER Working Paper Series wp-2023-2, World Institute for Development Economic Research (UNU-WIDER).
    8. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor & Varneskov, Rasmus T., 2019. "Unified inference for nonlinear factor models from panels with fixed and large time span," Journal of Econometrics, Elsevier, vol. 212(1), pages 4-25.
    9. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.
    10. Luisa Corrado & Roberta Distante & Majlinda Joxhe, 2019. "Body mass index and social interactions from adolescence to adulthood," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(4), pages 425-445, October.
    11. Mariam Camarero & Sergi Moliner & Cecilio Tamarit, 2021. "Is there a euro effect in the drivers of US FDI? New evidence using Bayesian model averaging techniques," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 157(4), pages 881-926, November.
    12. Francesca Marchetta & David E Sahn & Luca Tiberti, 2019. "The Role of Weather on Schooling and Work of Young Adults in Madagascar," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1203-1227.
    13. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    14. Ayden Higgins & Koen Jochmans, 2024. "Bootstrap Inference for Fixed‐Effect Models," Econometrica, Econometric Society, vol. 92(2), pages 411-427, March.
    15. J. M. C. Santos Silva & Silvana Tenreyro, 2022. "The Log of Gravity at 15," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 423-437, September.
    16. Waidelich, Paul & Steffen, Bjarne, 2024. "Renewable energy financing by state investment banks: Evidence from OECD countries," Energy Economics, Elsevier, vol. 132(C).
    17. David J. Kuenzel, 2023. "Non‐tariff measures: What's tariffs got to do with it?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(1), pages 133-163, February.
    18. Fonseca, Luís & Nikalexi, Katerina & Papaioannou, Elias, 2023. "The globalization of corporate control," Journal of International Economics, Elsevier, vol. 146(C).
    19. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    20. Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.11876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.