IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.05087.html
   My bibliography  Save this paper

Discrimination in Heterogeneous Games

Author

Listed:
  • Annick Laruelle
  • Andr'e Rocha

Abstract

In this paper, we consider coordination and anti-coordination heterogeneous games played by a finite population formed by different types of individuals who fail to recognize their own type but do observe the type of their opponent. We show that there exists symmetric Nash equilibria in which players discriminate by acting differently according to the type of opponent that they face in anti-coordination games, while no such equilibrium exists in coordination games. Moreover, discrimination has a limit: the maximum number of groups where the treatment differs is three. We then discuss the theoretical results in light of the observed behavior of people in some specific psychological contexts.

Suggested Citation

  • Annick Laruelle & Andr'e Rocha, 2022. "Discrimination in Heterogeneous Games," Papers 2206.05087, arXiv.org.
  • Handle: RePEc:arx:papers:2206.05087
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.05087
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
    2. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    3. André Barreira Da Silva Rocha & Annick Laruelle, 2013. "Evolution Of Cooperation In The Snowdrift Game With Heterogeneous Population," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Minniti & William Bygrave, 2001. "A Dynamic Model of Entrepreneurial Learning," Entrepreneurship Theory and Practice, , vol. 25(3), pages 5-16, April.
    2. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    3. Luis Alfonso Dau & Aya S. Chacar & Marjorie A. Lyles & Jiatao Li, 2022. "Informal institutions and international business: Toward an integrative research agenda," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(6), pages 985-1010, August.
    4. Giuseppe Pernagallo & Benedetto Torrisi, 2020. "A theory of information overload applied to perfectly efficient financial markets," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(2), pages 223-236, October.
    5. Sergeeva, Anastasia & Bhardwaj, Akhil & Dimov, Dimo, 2021. "In the heat of the game: Analogical abduction in a pragmatist account of entrepreneurial reasoning," Journal of Business Venturing, Elsevier, vol. 36(6).
    6. Ciarli, Tommaso & Ràfols, Ismael, 2019. "The relation between research priorities and societal demands: The case of rice," Research Policy, Elsevier, vol. 48(4), pages 949-967.
    7. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    8. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    9. Alan Kirman & François Laisney & Paul Pezanis-Christou, 2023. "Relaxing the symmetry assumption in participation games: a specification test for cluster-heterogeneity," Experimental Economics, Springer;Economic Science Association, vol. 26(4), pages 850-878, September.
    10. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    11. Agnieszka Wiszniewska-Matyszkiel, 2016. "Belief distorted Nash equilibria: introduction of a new kind of equilibrium in dynamic games with distorted information," Annals of Operations Research, Springer, vol. 243(1), pages 147-177, August.
    12. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    13. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    14. Gian Italo Bischi & Ugo Merlone, 2017. "Evolutionary minority games with memory," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 859-875, November.
    15. Salle, Isabelle & Yildizoglu, Murat & Zumpe, Martin & Sénégas, Marc-Alexandre, 2017. "Coordination through social learning in a general equilibrium model," Journal of Economic Behavior & Organization, Elsevier, vol. 141(C), pages 64-82.
    16. Tanimoto, Jun & Nakamura, Kousuke, 2016. "Social dilemma structure hidden behind traffic flow with route selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 92-99.
    17. Benjamin Patrick Evans & Mikhail Prokopenko, 2021. "Bounded rationality for relaxing best response and mutual consistency: The Quantal Hierarchy model of decision-making," Papers 2106.15844, arXiv.org, revised Mar 2023.
    18. Linde, Jona & Sonnemans, Joep & Tuinstra, Jan, 2014. "Strategies and evolution in the minority game: A multi-round strategy experiment," Games and Economic Behavior, Elsevier, vol. 86(C), pages 77-95.
    19. Mello, Bernardo A. & Cajueiro, Daniel O., 2008. "Minority games, diversity, cooperativity and the concept of intelligence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 557-566.
    20. Gianluca Vagnani, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Post-Print hal-00736952, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.05087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.