IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.00251.html
   My bibliography  Save this paper

The return of (I)DeFiX

Author

Listed:
  • Florentina c{S}oiman

    (CASC, CNRS - UMR3571)

  • Guillaume Dumas

    (CNRS - UMR3571)

  • Sonia Jimenez-Garces

    (CERAG)

Abstract

Decentralized Finance (DeFi) is a nascent set of financial services, using tokens, smart contracts, and blockchain technology as financial instruments. We investigate four possible drivers of DeFi returns: exposure to cryptocurrency market, the network effect, the investor's attention, and the valuation ratio. As DeFi tokens are distinct from classical cryptocurrencies, we design a new dedicated market index, denoted DeFiX. First, we show that DeFi tokens returns are driven by the investor's attention on technical terms such as "decentralized finance" or "DeFi", and are exposed to their own network variables and cryptocurrency market. We construct a valuation ratio for the DeFi market by dividing the Total Value Locked (TVL) by the Market Capitalization (MC). Our findings do not support the TVL/MC predictive power assumption. Overall, our empirical study shows that the impact of the cryptocurrency market on DeFi returns is stronger than any other considered driver and provides superior explanatory power.

Suggested Citation

  • Florentina c{S}oiman & Guillaume Dumas & Sonia Jimenez-Garces, 2022. "The return of (I)DeFiX," Papers 2204.00251, arXiv.org.
  • Handle: RePEc:arx:papers:2204.00251
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.00251
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guégan, Dominique & Renault, Thomas, 2021. "Does investor sentiment on social media provide robust information for Bitcoin returns predictability?," Finance Research Letters, Elsevier, vol. 38(C).
    2. Nadler, Philip & Guo, Yike, 2020. "The fair value of a token: How do markets price cryptocurrencies?," Research in International Business and Finance, Elsevier, vol. 52(C).
    3. Yarovaya, Larisa & Zięba, Damian, 2022. "Intraday volume-return nexus in cryptocurrency markets: Novel evidence from cryptocurrency classification," Research in International Business and Finance, Elsevier, vol. 60(C).
    4. Hu, Yang & Valera, Harold Glenn A. & Oxley, Les, 2019. "Market efficiency of the top market-cap cryptocurrencies: Further evidence from a panel framework," Finance Research Letters, Elsevier, vol. 31(C), pages 138-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Max Beinke & Jan Heinrich Beinke & Eduard Anton & Frank Teuteberg, 2024. "Breaking the chains of traditional finance: A taxonomy of decentralized finance business models," Electronic Markets, Springer;IIM University of St. Gallen, vol. 34(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şoiman, Florentina & Dumas, Jean-Guillaume & Jimenez-Garces, Sonia, 2023. "What drives DeFi market returns?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    2. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    3. José Almeida & Tiago Cruz Gonçalves, 2024. "Cryptocurrency market microstructure: a systematic literature review," Annals of Operations Research, Springer, vol. 332(1), pages 1035-1068, January.
    4. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    5. André Betzer & Jan Philipp Harries, 2022. "How online discussion board activity affects stock trading: the case of GameStop," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(4), pages 443-472, December.
    6. Eugene Msizi Buthelezi, 2024. "Navigating Global Uncertainty: Examining the Effect of Geopolitical Risks on Cryptocurrency Prices and Volatility in a Markov-Switching Vector Autoregressive Model," International Economic Journal, Taylor & Francis Journals, vol. 38(4), pages 564-590, October.
    7. Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    8. Myeong Jun Kim & Sung Y. Park, 2023. "Testing for market efficiency in cryptocurrencies: evidence from a non-linear conditional quantile framework," Applied Economics Letters, Taylor & Francis Journals, vol. 30(16), pages 2245-2251, September.
    9. KOUAKOU, Thiédjé Gaudens-Omer, 2025. "Volatilité et régulation des cryptomonnaies : approche monétaire orthodoxe versus approche monétaire hétérodoxe [Volatility and regulation of cryptocurrencies: orthodox monetary approach versus het," MPRA Paper 123774, University Library of Munich, Germany.
    10. Sun, Xiaotong & Stasinakis, Charalampos & Sermpinis, Georgios, 2024. "Decentralization illusion in Decentralized Finance: Evidence from tokenized voting in MakerDAO polls," Journal of Financial Stability, Elsevier, vol. 73(C).
    11. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    12. Samuel Asante Gyamerah & Ning Cai, 2021. "Two-Stage Hybrid Machine Learning Model for High-Frequency Intraday Bitcoin Price Prediction Based on Technical Indicators, Variational Mode Decomposition, and Support Vector Regression," Complexity, Hindawi, vol. 2021, pages 1-15, December.
    13. Brajaballav Kar & Chandrabhanu Das, 2022. "Cryptocurrency Response to COVID-19: A Test of Efficient Market Hypothesis," Springer Proceedings in Business and Economics, in: Rabi Narayan Subudhi & Sumita Mishra & Abu Saleh & Dariush Khezrimotlagh (ed.), Future of Work and Business in Covid-19 Era, pages 9-18, Springer.
    14. Jean-Guillaume Dumas & Sonia Jimenez-Garcès & Florentina Șoiman, 2021. "Blockchain technology and crypto-assets market analysis: vulnerabilities and risk assessment," Working Papers hal-03112920, HAL.
    15. Ahmet Faruk Aysan & Erhan Muğaloğlu & Ali Yavuz Polat & Hasan Tekin, 2023. "Whether and when did bitcoin sentiment matter for investors? Before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-24, December.
    16. Gustavo Iamin, 2024. "Are crypto-investors overconfident? The role of risk propensity and demographics. Evidence from Brazil and Portugal," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 26(1), pages 147-173, November.
    17. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean-Michel & Schweizer, Denis, 2023. "Interactions between investors’ fear and greed sentiment and Bitcoin prices," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    18. Colon, Francisco & Kim, Chaehyun & Kim, Hana & Kim, Wonjoon, 2021. "The effect of political and economic uncertainty on the cryptocurrency market," Finance Research Letters, Elsevier, vol. 39(C).
    19. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    20. Silky Vigg Kushwah & Shab Hundal & Payal Goel, 2024. "Unveiling Interconnectedness and Volatility Transmission: A Novel GARCH Analysis of Leading Global Cryptocurrencies," International Journal of Economics and Financial Issues, Econjournals, vol. 14(3), pages 132-139, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.00251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.