IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.12572.html
   My bibliography  Save this paper

Computational Efficiency in Multivariate Adversarial Risk Analysis Models

Author

Listed:
  • Michael Macgregor Perry
  • Hadi El-Amine

Abstract

In this paper we address the computational feasibility of the class of decision theoretic models referred to as adversarial risk analyses (ARA). These are models where a decision must be made with consideration for how an intelligent adversary may behave and where the decision-making process of the adversary is unknown, and is elicited by analyzing the adversary's decision problem using priors on his utility function and beliefs. The motivation of this research was to develop a computational algorithm that can be applied across a broad range of ARA models; to the best of our knowledge, no such algorithm currently exists. Using a two-person sequential model, we incrementally increase the size of the model and develop a simulation-based approximation of the true optimum where an exact solution is computationally impractical. In particular, we begin with a relatively large decision space by considering a theoretically continuous space that must be discretized. Then, we incrementally increase the number of strategic objectives which causes the decision space to grow exponentially. The problem is exacerbated by the presence of an intelligent adversary who also must solve an exponentially large decision problem according to some unknown decision-making process. Nevertheless, using a stylized example that can be solved analytically we show that our algorithm not only solves large ARA models quickly but also accurately selects to the true optimal solution. Furthermore, the algorithm is sufficiently general that it can be applied to any ARA model with a large, yet finite, decision space.

Suggested Citation

  • Michael Macgregor Perry & Hadi El-Amine, 2021. "Computational Efficiency in Multivariate Adversarial Risk Analysis Models," Papers 2110.12572, arXiv.org.
  • Handle: RePEc:arx:papers:2110.12572
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.12572
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Rios Insua & David Banks & Jesus Rios, 2016. "Modeling Opponents in Adversarial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 742-755, April.
    2. Gerald G. Brown & Louis Anthony (Tony) Cox, Jr., 2011. "How Probabilistic Risk Assessment Can Mislead Terrorism Risk Analysts," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 196-204, February.
    3. Koller, Daphne & Milch, Brian, 2003. "Multi-agent influence diagrams for representing and solving games," Games and Economic Behavior, Elsevier, vol. 45(1), pages 181-221, October.
    4. Chris Edmond, 2013. "Information Manipulation, Coordination, and Regime Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1422-1458.
    5. Lapan, Harvey E & Sandler, Todd, 1988. "To Bargain or Not to Bargain: That Is the Question," American Economic Review, American Economic Association, vol. 78(2), pages 16-21, May.
    6. Juan Carlos Sevillano & David Rios Insua & Jesus Rios, 2012. "Adversarial Risk Analysis: The Somali Pirates Case," Decision Analysis, INFORMS, vol. 9(2), pages 86-95, June.
    7. Joseph B. Kadane & Patrick D. Larkey, 1982. "Subjective Probability and the Theory of Games," Management Science, INFORMS, vol. 28(2), pages 113-120, February.
    8. Dan Kovenock & Brian Roberson, 2012. "Coalitional Colonel Blotto Games with Application to the Economics of Alliances," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(4), pages 653-676, August.
    9. Chen Wang & Vicki M. Bier, 2011. "Target-Hardening Decisions Based on Uncertain Multiattribute Terrorist Utility," Decision Analysis, INFORMS, vol. 8(4), pages 286-302, December.
    10. John C. Harsanyi, 1967. "Games with Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model," Management Science, INFORMS, vol. 14(3), pages 159-182, November.
    11. David Ríos Insua & Fabrizio Ruggeri & Cesar Alfaro & Javier Gomez, 2016. "Robustness for Adversarial Risk Analysis," International Series in Operations Research & Management Science, in: Michael Doumpos & Constantin Zopounidis & Evangelos Grigoroudis (ed.), Robustness Analysis in Decision Aiding, Optimization, and Analytics, chapter 0, pages 39-58, Springer.
    12. Weiwei Fan & L. Jeff Hong & Barry L. Nelson, 2016. "Indifference-Zone-Free Selection of the Best," Operations Research, INFORMS, vol. 64(6), pages 1499-1514, December.
    13. Bruce Bueno de Mesquita, 1997. "A decision making model: Its structure and form," International Interactions, Taylor & Francis Journals, vol. 23(3-4), pages 235-266, May.
    14. Shouqiang Wang & David Banks, 2011. "Network routing for insurgency: An adversarial risk analysis framework," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(6), pages 595-607, September.
    15. Concha Bielza & Peter Müller & David Ríos Insua, 1999. "Decision Analysis by Augmented Probability Simulation," Management Science, INFORMS, vol. 45(7), pages 995-1007, July.
    16. Michael Suk-Young Chwe, 2000. "Communication and Coordination in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(1), pages 1-16.
    17. Hubert Janos Kiss & Ismael Rodríguez-Lara & Alfonso Rosa-García, 2017. "Overthrowing the dictator: a game-theoretic approach to revolutions and media," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(2), pages 329-355, August.
    18. César Gil & David Rios Insua & Jesus Rios, 2016. "Adversarial Risk Analysis for Urban Security Resource Allocation," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 727-741, April.
    19. John C. Harsanyi, 1982. "Comment---Subjective Probability and the Theory of Games: Comments on Kadane and Larkey's Paper," Management Science, INFORMS, vol. 28(2), pages 120-124, February.
    20. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    21. Laura McLay & Casey Rothschild & Seth Guikema, 2012. "Robust Adversarial Risk Analysis: A Level- k Approach," Decision Analysis, INFORMS, vol. 9(1), pages 41-54, March.
    22. Insua, Insua Rios & Rios, Jesus & Banks, David, 2009. "Adversarial Risk Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 841-854.
    23. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu, 2016. "Dynamic Sampling Allocation and Design Selection," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 195-208, May.
    24. Stephen E. Chick & Jürgen Branke & Christian Schmidt, 2010. "Sequential Sampling to Myopically Maximize the Expected Value of Information," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 71-80, February.
    25. Jesus Rios & David Rios Insua, 2012. "Adversarial Risk Analysis for Counterterrorism Modeling," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 894-915, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Perry & Hadi El-Amine, 2019. "Computational Efficiency in Multivariate Adversarial Risk Analysis Models," Decision Analysis, INFORMS, vol. 16(4), pages 314-332, December.
    2. González-Ortega, Jorge & Ríos Insua, David & Cano, Javier, 2019. "Adversarial risk analysis for bi-agent influence diagrams: An algorithmic approach," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1085-1096.
    3. William N. Caballero & Ethan Gharst & David Banks & Jeffery D. Weir, 2023. "Multipolar Security Cooperation Planning: A Multiobjective, Adversarial-Risk-Analysis Approach," Decision Analysis, INFORMS, vol. 20(1), pages 16-39, March.
    4. David Rios Insua & David Banks & Jesus Rios, 2016. "Modeling Opponents in Adversarial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 742-755, April.
    5. Roponen, Juho & Ríos Insua, David & Salo, Ahti, 2020. "Adversarial risk analysis under partial information," European Journal of Operational Research, Elsevier, vol. 287(1), pages 306-316.
    6. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    7. Muhammad Ejaz & Stephen Joe & Chaitanya Joshi, 2021. "Adversarial Risk Analysis for Auctions Using Mirror Equilibrium and Bayes Nash Equilibrium," Decision Analysis, INFORMS, vol. 18(3), pages 185-202, September.
    8. Jesus Rios & David Rios Insua, 2012. "Adversarial Risk Analysis for Counterterrorism Modeling," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 894-915, May.
    9. César Gil & David Rios Insua & Jesus Rios, 2016. "Adversarial Risk Analysis for Urban Security Resource Allocation," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 727-741, April.
    10. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    11. Insua, Insua Rios & Rios, Jesus & Banks, David, 2009. "Adversarial Risk Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 841-854.
    12. Michael Macgregor Perry, 2021. "Analyzing a Complex Game for the South China Sea Fishing Dispute using Response Surface Methodologies," Papers 2110.12568, arXiv.org, revised Dec 2021.
    13. Dogucan Mazicioglu & Jason R. W. Merrick, 2018. "Behavioral Modeling of Adversaries with Multiple Objectives in Counterterrorism," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 962-977, May.
    14. William M. Kroshl & Shahram Sarkani & Thomas A Mazzuchi, 2015. "Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent‐Based Simulation," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1690-1705, September.
    15. Ekin, Tahir & Naveiro, Roi & Ríos Insua, David & Torres-Barrán, Alberto, 2023. "Augmented probability simulation methods for sequential games," European Journal of Operational Research, Elsevier, vol. 306(1), pages 418-430.
    16. Wei Wang & Francesco Di Maio & Enrico Zio, 2019. "Adversarial Risk Analysis to Allocate Optimal Defense Resources for Protecting Cyber–Physical Systems from Cyber Attacks," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2766-2785, December.
    17. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    18. Ríos Insua, David & Ruggeri, Fabrizio & Soyer, Refik & Rasines, Daniel G., 2018. "Adversarial issues in reliability," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1113-1119.
    19. Stefan Rass & Sandra König & Stefan Schauer, 2017. "Defending Against Advanced Persistent Threats Using Game-Theory," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-43, January.
    20. Yanling Chang & Alan Erera & Chelsea White, 2015. "A leader–follower partially observed, multiobjective Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 103-128, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.12572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.