IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.07201.html
   My bibliography  Save this paper

Minimax Estimation of Conditional Moment Models

Author

Listed:
  • Nishanth Dikkala
  • Greg Lewis
  • Lester Mackey
  • Vasilis Syrgkanis

Abstract

We develop an approach for estimating models described via conditional moment restrictions, with a prototypical application being non-parametric instrumental variable regression. We introduce a min-max criterion function, under which the estimation problem can be thought of as solving a zero-sum game between a modeler who is optimizing over the hypothesis space of the target model and an adversary who identifies violating moments over a test function space. We analyze the statistical estimation rate of the resulting estimator for arbitrary hypothesis spaces, with respect to an appropriate analogue of the mean squared error metric, for ill-posed inverse problems. We show that when the minimax criterion is regularized with a second moment penalty on the test function and the test function space is sufficiently rich, then the estimation rate scales with the critical radius of the hypothesis and test function spaces, a quantity which typically gives tight fast rates. Our main result follows from a novel localized Rademacher analysis of statistical learning problems defined via minimax objectives. We provide applications of our main results for several hypothesis spaces used in practice such as: reproducing kernel Hilbert spaces, high dimensional sparse linear functions, spaces defined via shape constraints, ensemble estimators such as random forests, and neural networks. For each of these applications we provide computationally efficient optimization methods for solving the corresponding minimax problem (e.g. stochastic first-order heuristics for neural networks). In several applications, we show how our modified mean squared error rate, combined with conditions that bound the ill-posedness of the inverse problem, lead to mean squared error rates. We conclude with an extensive experimental analysis of the proposed methods.

Suggested Citation

  • Nishanth Dikkala & Greg Lewis & Lester Mackey & Vasilis Syrgkanis, 2020. "Minimax Estimation of Conditional Moment Models," Papers 2006.07201, arXiv.org.
  • Handle: RePEc:arx:papers:2006.07201
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.07201
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric Instrumental Variable Estimation Under Monotonicity," Econometrica, Econometric Society, vol. 85, pages 1303-1320, July.
    2. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric instrumental variable estimation under monotonicity," CeMMAP working papers 14/17, Institute for Fiscal Studies.
    3. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    4. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    5. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
    6. Denis Chetverikov & Dongwoo Kim & Daniel Wilhelm, 2018. "Nonparametric instrumental-variable estimation," Stata Journal, StataCorp LP, vol. 18(4), pages 937-950, December.
    7. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    8. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    9. Xiaohong Chen & Timothy M. Christensen, 2018. "Optimal sup‐norm rates and uniform inference on nonlinear functionals of nonparametric IV regression," Quantitative Economics, Econometric Society, vol. 9(1), pages 39-84, March.
    10. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    11. L. Yeganova & W. J. Wilbur, 2009. "Isotonic Regression under Lipschitz Constraint," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 429-443, May.
    12. Joel L. Horowitz, 2007. "Asymptotic Normality Of A Nonparametric Instrumental Variables Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1329-1349, November.
    13. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    14. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Krikamol Muandet & Wittawat Jitkrittum & Jonas Kubler, 2020. "Kernel Conditional Moment Test via Maximum Moment Restriction," Papers 2002.09225, arXiv.org, revised Jun 2020.
    16. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahul Singh, 2021. "Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension," Papers 2102.11076, arXiv.org, revised Jul 2024.
    2. V Chernozhukov & W K Newey & R Singh, 2023. "A simple and general debiased machine learning theorem with finite-sample guarantees," Biometrika, Biometrika Trust, vol. 110(1), pages 257-264.
    3. Jiafeng Chen & Xiaohong Chen & Elie Tamer, 2021. "Efficient Estimation in NPIV Models: A Comparison of Various Neural Networks-Based Estimators," Papers 2110.06763, arXiv.org, revised Oct 2022.
    4. Ziyu Wang & Yucen Luo & Yueru Li & Jun Zhu & Bernhard Scholkopf, 2022. "Spectral Representation Learning for Conditional Moment Models," Papers 2210.16525, arXiv.org, revised Dec 2022.
    5. Guido Imbens & Nathan Kallus & Xiaojie Mao & Yuhao Wang, 2022. "Long-term Causal Inference Under Persistent Confounding via Data Combination," Papers 2202.07234, arXiv.org, revised Aug 2024.
    6. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    7. Andrew Bennett & Nathan Kallus, 2020. "The Variational Method of Moments," Papers 2012.09422, arXiv.org, revised Mar 2023.
    8. Pengzhou Wu & Kenji Fukumizu, 2021. "Towards Principled Causal Effect Estimation by Deep Identifiable Models," Papers 2109.15062, arXiv.org, revised Nov 2021.
    9. Jiafeng Chen & Daniel L. Chen & Greg Lewis, 2020. "Mostly Harmless Machine Learning: Learning Optimal Instruments in Linear IV Models," Papers 2011.06158, arXiv.org, revised Jun 2021.
    10. Jonas Metzger, 2022. "Adversarial Estimators," Papers 2204.10495, arXiv.org, revised Jun 2022.
    11. Chen, Jiafeng & Chen, Xiaohong & Tamer, Elie, 2023. "Efficient estimation of average derivatives in NPIV models: Simulation comparisons of neural network estimators," Journal of Econometrics, Elsevier, vol. 235(2), pages 1848-1875.
    12. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
    13. Masahiro Kato & Masaaki Imaizumi & Kenichiro McAlinn & Haruo Kakehi & Shota Yasui, 2021. "Learning Causal Models from Conditional Moment Restrictions by Importance Weighting," Papers 2108.01312, arXiv.org, revised Sep 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingliang Fan & Zijian Guo & Ziwei Mei & Cun-Hui Zhang, 2023. "Inference for Nonlinear Endogenous Treatment Effects Accounting for High-Dimensional Covariate Complexity," Papers 2310.08063, arXiv.org, revised Jun 2024.
    2. Jad Beyhum & Elia Lapenta & Pascal Lavergne, 2023. "One-step smoothing splines instrumental regression," Papers 2307.14867, arXiv.org, revised Apr 2024.
    3. Beyhum, Jad & Lapenta, Elia & Lavergne, Pascal, 2023. "One-step nonparametric instrumental regression using smoothing splines," TSE Working Papers 23-1467, Toulouse School of Economics (TSE).
    4. Escanciano, Juan Carlos & Li, Wei, 2021. "Optimal Linear Instrumental Variables Approximations," Journal of Econometrics, Elsevier, vol. 221(1), pages 223-246.
    5. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    6. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
    7. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    8. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    9. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    10. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    11. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
    12. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.
    13. Krief, Jerome M., 2017. "Direct instrumental nonparametric estimation of inverse regression functions," Journal of Econometrics, Elsevier, vol. 201(1), pages 95-107.
    14. Andrews, Donald W.K., 2017. "Examples of L2-complete and boundedly-complete distributions," Journal of Econometrics, Elsevier, vol. 199(2), pages 213-220.
    15. Christoph Breunig & Xiaohong Chen, 2020. "Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models," Papers 2006.09587, arXiv.org, revised Nov 2024.
    16. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    17. Chen, Xiaohong & Pouzo, Demian & Powell, James L., 2019. "Penalized sieve GEL for weighted average derivatives of nonparametric quantile IV regressions," Journal of Econometrics, Elsevier, vol. 213(1), pages 30-53.
    18. Christoph Breunig & Xiaohong Chen, 2020. "Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models," Cowles Foundation Discussion Papers 2238R, Cowles Foundation for Research in Economics, Yale University, revised Dec 2021.
    19. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    20. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.07201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.